Facile Synthesis of Nano-Diced SnO2–ZnO Composite by Chemical Route for Gas Sensor Application

  • K. S. Pakhare
  • B. M. SargarEmail author
  • S. S. Potdar
  • A. K. Sharma
  • U. M. Patil


The simple chemical bath deposition (CBD) method is used to synthesize SnO2–ZnO nanocomposite at room temperature. Formation of SnO2–ZnO nancomposite is confirmed by the x-ray diffraction (XRD) pattern of annealed films. Scanning electron microscopy (SEM) micrographs of nanocomposite SnO2–ZnO depict that morphological change from nanocubes to manifold hexagonal nanorods with an increase in ZnO content in a composite sample. Also, pure SnO2 sample exhibits interconnected nanospheres. Electron dispersive spectroscopy (EDS) is employed to confirm elemental compositions in composite films. SnO2–ZnO samples were applied as a sensor for different test gases, namely liquified petroleum gas (LPG), ethanol, ammonia (NH3), and hydrogen sulfide (H2S). The maximum response of 59.67% is observed for ethanol at an operating temperature of 275°C and 24 ppm gas concentration. Also, a composite sensor shows a quick response in comparison with a bare sensor. This superior performance of composite over pure sensor may be attributed to a n–n heterojunction at intergrain boundaries. The SnO2–ZnO sensor is found to be selective towards ethanol even at lower gas concentrations.


Chemical bath deposition method XRD SEM gas sensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    S. Yan, S. Ma, W. Li, X. Xu, L. Cheng, H. Song, and X. Liang, Sens Actuators B Chem. 221, 88 (2015).CrossRefGoogle Scholar
  2. 2.
    N. Yamazoe, Sens Actuators B Chem. 108, 2 (2005).CrossRefGoogle Scholar
  3. 3.
    K. Jeevitesh, T. Rajput, K. Pathak, V. Kumar, H. Swart, and L. Purohit, Physica B Condens Matter. 535, 314 (2018).CrossRefGoogle Scholar
  4. 4.
    D. Han, L. Zhai, F. Gu, and Z. Wang, Sens Actuators B Chem. 262, 655 (2018).CrossRefGoogle Scholar
  5. 5.
    D. Dao, K. Shibuya, T. Bui, and S. Sugiyama, Procedia Eng. 25, 1149 (2011).CrossRefGoogle Scholar
  6. 6.
    Y. Hou and J. Ahalapatiya, Proc. Nat.l Sci. Mater. 27, 435 (2017).CrossRefGoogle Scholar
  7. 7.
    R. Zhao, Z. Wang, Y. Yang, X. Xing, T. Zou, Z. Wang, and Y. Wang, J. Phys. Chem. Solids 120, 173 (2018).CrossRefGoogle Scholar
  8. 8.
    Z. Li, X. Niu, Z. Lin, N. Wang, H. Shen, W. Liu, K. Sun, Y. Fu, and Z. Wang, J. Alloys Compd. 682, 647 (2016).CrossRefGoogle Scholar
  9. 9.
    D. Patil, V. Patil, and P. Patil, Sens Actuators B Chem. 152, 299 (2011).CrossRefGoogle Scholar
  10. 10.
    M. Saha, A. Banargy, A. Haldar, J. Mondal, A. Sen, and H. Maiti, Sens Actuators B Chem. 79, 192 (2001).CrossRefGoogle Scholar
  11. 11.
    N. Yamada, Y. Kurokawa, and T. Seiyama, Sens Actuators B Chem. 4, 283 (1983).CrossRefGoogle Scholar
  12. 12.
    A. Sharma, S. Potdar, K. Pakhare, B. Sargar, M. Rokade, and N. Tarwal, J. Mater. Sci.: Mater. Electron. 28, 3752 (2017).Google Scholar
  13. 13.
    W. Li, S. Ma, Y. Li, G. Yang, Y. Mao, J. Luo, D. Gengzang, X. Xu, and S. Yan, Sens Actuators B Chem. 211, 392 (2015).CrossRefGoogle Scholar
  14. 14.
    C. Aifan, H. Xiaodong, T. Zhangfa, B. Shouli, L. Ruixian, and L. Chiun, Sens Actuators B Chem. 115, 316 (2006).CrossRefGoogle Scholar
  15. 15.
    Y. Liu, J. Yu, and P. Lai, Int. J. Hydrogen Energy 39, 10313 (2014).CrossRefGoogle Scholar
  16. 16.
    Y. Wang, F. Qu, J. Liu, Y. Wang, J. Zhou, and S. Ruan, Sens Actuators B Chem. 209, 515 (2015).CrossRefGoogle Scholar
  17. 17.
    M. Gholami, A. Khodadadi, A. Firooz, and Y. Mortazavi, Sens Actuators B Chem. 212, 395 (2015).CrossRefGoogle Scholar
  18. 18.
    S. Hemmati, A. Firooz, A. Khodadadi, and Y. Mortazavi, Sens Actuators B Chem. 160, 1298 (2011).CrossRefGoogle Scholar
  19. 19.
    J. Wang, Z. Chena, Y. Liu, C. Shek, C. Wu, and J. Lai, Sol. Energy Mater. Sol. Cells 128, 254 (2014).CrossRefGoogle Scholar
  20. 20.
    J.-C. Li, X. Hou, and Q. Cao, J. Alloys Compd. 611, 219 (2014).CrossRefGoogle Scholar
  21. 21.
    M. Ahmad, S. Yingying, H. Sun, W. Shen, and J. Zhu, J. Solid State Chem. 196, 326 (2012).CrossRefGoogle Scholar
  22. 22.
    W. Wang, Y. Zhu, and L. Yang, Adv. Funct. Mater. 17, 59 (2007).CrossRefGoogle Scholar
  23. 23.
    W. Zhang and W. Zhang, Sens Actuators B Chem. 134, 403 (2008).CrossRefGoogle Scholar
  24. 24.
    C. Liangyuan, B. Shouli, Z. Guojun, L. Dianqing, C. Aifan, and C. Liu, Sens Actuators B Chem. 134, 360 (2008).CrossRefGoogle Scholar
  25. 25.
    A. Sharma, S. Potdar, M. Yewale, D. Shirgaonkar, K. Pakhare, B. Sargar, M. Rokade, and U. Patil, Mater. Sci. 37, 1 (2019).Google Scholar
  26. 26.
    X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, Sensors 12, 9635 (2012).CrossRefGoogle Scholar
  27. 27.
    C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, Sensors 10, 2088 (2010).CrossRefGoogle Scholar
  28. 28.
    K. Pakhare and B. Sargar, Int. J .Curr. Eng. Sci. Res. 4, 84 (2017).CrossRefGoogle Scholar
  29. 29.
    A. Kohan, G. Cender, D. Morgan, and C. Walle, Phys. Rev. B 61, 15019 (2000).CrossRefGoogle Scholar
  30. 30.
    N. Md Sin, M. Mamat, M. Malek, and M. Rusop, Appl. Nanosci. 4, 829 (2014).CrossRefGoogle Scholar
  31. 31.
    S. Wanga, W. Yub, C. Chenga, T. Zhangb, M. Gec, Y. Sunb, and N. Daib, MRS Bull. 89, 267 (2017).CrossRefGoogle Scholar
  32. 32.
    S. Wang, W. Yu, C. Cheng, T. Zhang, M. Ge, Y. Sun, and N. Dai, MRS Bull. 89, 267 (2017).CrossRefGoogle Scholar
  33. 33.
    Z. Lou, L. Wang, R. Wang, T. Fei, and T. Zhang, Solid State Electron. 76, 91 (2012).CrossRefGoogle Scholar
  34. 34.
    M. Kumara, A. Kumarb, and A. Abhyankar, Ceram. Int. 40, 8411 (2014).CrossRefGoogle Scholar
  35. 35.
    S. Santra, A. Sinha, A. Luca, S. Ali, F. Udrea, P. Guha, S. Ray, and J. Gardner, Nanotechnology 27, 125502 (2016).CrossRefGoogle Scholar
  36. 36.
    X. Wang, P. Ren, H. Tian, H. Fan, C. Cai, and W. Liu, J. Alloy. Compd. 669, 29 (2016).CrossRefGoogle Scholar
  37. 37.
    Y. Li, Physica E Low Dimens. Syst. Nanostruct. 96, 54 (2018).CrossRefGoogle Scholar
  38. 38.
    L. Liu, S. Li, J. Zhuang, L. Wang, J. Zhang, and H. Li, Sens Actuators B Chem. 155, 782 (2011).CrossRefGoogle Scholar
  39. 39.
    T. Nenov and S. Yordanov, Ceramic sensor- technology and applications, (Technomic Publishing: Lancaster, P, USA, 1996).Google Scholar
  40. 40.
    L. Cheng, S. Ma, X. Li, J. Luo, W. Li, F. Li, Y. Mao, T. Wang, and Y. Li, Sens Actuators B Chem. 200, 181 (2014).CrossRefGoogle Scholar
  41. 41.
    K. Pakhare, B. Sargar, S. Potdar, and A. Sharma, Int. J. Eng. Res. Appl. 7, 6 (2017).Google Scholar
  42. 42.
    T. Jinkawa, G. Sakai, J. Tamaki, N. Miura, and N. Yamazoe, J. Mol. Catal. A: Chem. 155, 193 (2000).CrossRefGoogle Scholar
  43. 43.
    J. Xu, J. Han, Y. Zang, Y. Sun, and B. Xie, Sens Actuators B Chem. 132, 334 (2008).CrossRefGoogle Scholar
  44. 44.
    P. Rai and Y. Yu, Sens Actuators B Chem. 173, 58 (2012).CrossRefGoogle Scholar
  45. 45.
    P. Rakshit, S. Santra, I. Manna, and S. Ray, RSC Adv. 4, 36749 (2014).CrossRefGoogle Scholar
  46. 46.
    U. Nakate, P. Patil, B. Ghule, S. Ekar, A. Al-Osta, V. Jadhav, R. Mane, S. Kale, M. Naushad, and C. O’Dwyer, J. Anal. Appl. Pyrolysis 124, 362 (2017).CrossRefGoogle Scholar
  47. 47.
    M. Gurbuza, G. Gunkayac, and A. Dogan, Appl. Surf. Sci. 318, 334 (2014).CrossRefGoogle Scholar
  48. 48.
    Z. Song, S. Xu, M. Li, W. Zhang, H. Yu, Y. Wang, and H. Liu, Thin Solid Films 618, 232 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.DIST-FIST Sponsored Material Research Laboratory, Department of ChemistryJaysingpur College, JaysingpurKolhapurxIndia
  2. 2.Anandibai Raorane ArtsCommerce and Science CollegeVaibhavwadi, SindhudurgIndia
  3. 3.Department of PhysicsSanjivan Engineering and Technology InstitutePanhala, KolhapurIndia
  4. 4.School of PhysicsShree Mata Vaishno Devi UniversityKatraIndia
  5. 5.Department of Physics, Center for Interdisciplinary Research StudyD.Y. Patil UniversityKolhapurIndia

Personalised recommendations