Journal of Electronic Materials

, Volume 48, Issue 10, pp 6366–6371 | Cite as

Semianalytical Threshold Voltage Model of a Double-Gate Nanoscale RingFET for Terahertz Applications in Radiation-Hardened (Rad-Hard) Environments

  • Kunal SinghEmail author
  • S. Kumar
  • P. K. Tiwari
  • A. B. Yadav
  • S. Dubey
  • S. Jit


In this work, a recent device structure called double-gate (DG) nanoscale RingFET has been investigated by developing a computationally efficient foremost semianalytical threshold voltage model. Poisson’s equation has been solved using parabolic approximation to calculate surface channel potential, which has been further employed to formulate the threshold voltage of the device. This device comes under the category of edgeless transistor, which has a lot of scope in radiation harsh environment-based applications. A cutoff frequency of terahertz range up to 1.1 THz has been observed in this device, which makes it very useful for high-frequency applications. The proposed model results are extensively verified with the simulation data obtained with a three-dimensional technology computer-aided design (3D TCAD) simulator from SILVACO ATLAS™. Both the modeled and simulated results are found to be in good agreement.


Semianalytical threshold voltage model short channel effects (SCEs) edgeless transistors nanoscale DG RingFETs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    T.R. Oldham, A.J. Lelis, H.E. Boesch, J.M. Benedetto, F.B. Mclean, and J.M. McGarrity, IEEE Trans. Nucl. Sci. NS-34, 1184 (1987).CrossRefGoogle Scholar
  2. 2.
    A. Giraldo, A. Paccagnella, and A. Minzoni, Solid State Electron. 44, 981 (2000).CrossRefGoogle Scholar
  3. 3.
    J.A. De Lima, Solid State Electron. 39, 1524 (1996).CrossRefGoogle Scholar
  4. 4.
    D.C. Mayer, R.C. Lacoe, E.E. King, and J.V. Osborn, IEEE Trans. Nucl. Sci. 51, 3615 (2004).CrossRefGoogle Scholar
  5. 5.
    N. E. Williams and A. Gokirmak, in ISDRS 2011 (2011), pp. 9–10.Google Scholar
  6. 6.
    N. Williams, H. Silva, and A. Gokirmak, IEEE Electron Device Lett. 33, 1339 (2012).CrossRefGoogle Scholar
  7. 7.
    S. Kumar, V. Kumari, S. Singh, M. Saxena, and S. Member, IEEE Trans. Electron Devices 62, 3965 (2015).CrossRefGoogle Scholar
  8. 8.
    M. Vijh, R. S. Gupta, and S. Pandey, in Prog. Electromagn. Res. Symp.Fall (PIERSFALL), Singapore (2017), pp. 19–22.Google Scholar
  9. 9.
    K. Ghosh, S. Member, and U. Singisetti, IEEE Trans. Electron Devices 61, 3405 (2014).CrossRefGoogle Scholar
  10. 10.
    A. Bansal and K. Roy, IEEE Trans. Electron Devices 54, 1793 (2007).CrossRefGoogle Scholar
  11. 11.
    T. Holtij, M. Schwarz, A. Kloes, and B. Iñíguez, Solid State Electron. 90, 107 (2013).CrossRefGoogle Scholar
  12. 12.
    K.P. Pradhan, S.K. Mohapatra, P.K. Sahu, and D.K. Behera, Microelectron. J. 45, 144 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Kunal Singh
    • 1
    Email author
  • S. Kumar
    • 2
  • P. K. Tiwari
    • 3
  • A. B. Yadav
    • 4
  • S. Dubey
    • 5
  • S. Jit
    • 6
  1. 1.Department of Electronics and Communication EngineeringNational Institute of TechnologyJamshedpurIndia
  2. 2.Department of Electronics and Communication EngineeringIndian Institute of Information TechnologyBhagalpurIndia
  3. 3.Department of Electrical EngineeringIndian Institute of TechnologyPatnaIndia
  4. 4.Department of Electronics and Communication EngineeringSree Vidyanikethan Engineering CollegeTirupatiIndia
  5. 5.Department of PhysicsL.N.D. College (B. R. Ambedkar Bihar University, Muzaffarpur)MotihariIndia
  6. 6.Department of Electronics EngineeringIndian Institute of Technology (BHU)VaranasiIndia

Personalised recommendations