Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6382–6396 | Cite as

Electrical, Morphological, and Compositional Characterization of Screen-Printed Al Contacts Annealed in Horizontal and Vertical Configurations

  • Samir Mahmmod AhmadEmail author
  • Cheow Siu Leong
  • Richard W. Winder
  • K. Sopian
  • Saleem H. Zaidi
Article
  • 7 Downloads

Abstract

The electrical, morphological, and compositional characteristics of screen-printed Al paste contacts on p-doped Si wafers have been investigated in horizontal and vertical thermal annealing configurations over a wide temperature range. The horizontal configuration refers to an industrial six-zone conveyor belt rapid thermal annealing furnace. The vertical configuration refers to a modified three-zone quartz tube furnace with vertically stacked wafers. The contact resistivity was measured by using the transmission line method. In the horizontal configuration, the resistivity exhibited a pronounced minimum at temperature of ∼ 870°C, while higher temperatures resulted in a rapid increase in the contact resistivity. In contrast, the resistivity variation in the vertical configuration was linear. The lowest contact resistivities measured were 136 mΩ cm2 in the horizontal and 103 mΩ cm2 in the vertical configuration, demonstrating a 24% reduction with the latter approach. The surface morphology and composition of the Al/Si contact interface were determined by field-emission scanning electron microscopy and energy-dispersive x-ray spectroscopy. The measured elemental concentrations were curve-fit to accurately measure the width of the interface regions. The Al/Si contact region was observed to consist of five parts: (a) a top sintered paste layer of Al/Si spheres, (b) voids between the Al/Si spheres, (c) an Al/Si eutectic region, (d) an epitaxially grown Al-doped Si layer, and (e) the lightly Al-diffused Si substrate. Sintered Al/Si spheres were observed to consist of a solid core of Al embedded in a thin shell of Al, Al2O3, SiO2, and Si. The rapid rise in resistivity at high temperatures is attributed to enhanced oxidation of Al and Si islands, resulting in thicker Al2O3/SiO2 films between metallic Al spheres. The lower resistivity observed in the vertical configuration was attributed to larger, more uniform Al–Si eutectic regions, higher density of Al/Si films within the paste region, and transformation of sintered Al spheres into larger pseudosquare islands. The proposed Al/Si interface model was further supported by the higher resistance measured for the pulsed laser-based Al/Si contact with high Si concentrations in the Al/Si eutectic region. An approximately linear reduction in resistivity as a function of time over a broad range varying from microseconds to seconds reinforced the proposed model and suggests that longer, steady-state annealing is the preferred approach to achieve the lowest contact resistivity.

Keywords

Contact resistivity transmission line method Al contact scanning electron microscopy energy-dispersive x-ray 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to thank the Malaysian government for partial funding of this research through PRGS, FRGS, ERGS, AP, and MIDA Grants. We would also like to thank Ms. S. Seow for invaluable assistance with SEM and EDX measurements.

References

  1. 1.
    Renewables 2018 Global status report (2018). www.ren21.net. Accessed 29 March 2019.
  2. 2.
    S.H. Zaidi, D.S. Ruby, and J.M. Gee, IEEE Trans. Electron Devices 48, 1200 (2001).CrossRefGoogle Scholar
  3. 3.
    S.M. Ahmad, S.L. Cheow, N.L. Ludin, K. Sopian, and S.H. Zaidi, Res. Phys. 7, 2183 (2017).Google Scholar
  4. 4.
    S.M. Ahmad, C.S. Leong, R.W. Winder, K. Sopian, and S.H. Zaidi, J. Electron. Mater. 47, 6791 (2018).CrossRefGoogle Scholar
  5. 5.
    J. Del Alamo, J. Eguren, and A. Luque, Solid-State Electron. 24, 415 (1981).CrossRefGoogle Scholar
  6. 6.
    C.S. Solanki, Solar Photovoltaics Fundamentals, Technologies and Applications (Delhi: PHI Learning, 2011), p. 80.Google Scholar
  7. 7.
    S.M. Sze and K.K. Ng, Physics of Semiconductor Devices (New York: Wiley, 2007), p. 187.Google Scholar
  8. 8.
    B. Sopori, V. Mehta, P. Rupnowski, H. Moutinho, A. Shaikh, C. Khadilkar, M. Bennett, and D. Carlson, MRS Proceedings vol. 1123 (2008), p. 5.Google Scholar
  9. 9.
    R. Hoenig, Ph.D. Thesis, University of Freiburg, Freiburg (2014).Google Scholar
  10. 10.
    I.B. Cooper, A. Ebong, J.S. Renshaw, R. Reedy, M. Al-Jassim, and A. Rohatgi, IEEE Electron Device Lett. 31, 461 (2010).CrossRefGoogle Scholar
  11. 11.
    E. Cabrera, S. Olibet, J. Glatz-Reichenbach, R. Kopecek, D. Reinke, and G. Schubert, J. Appl. Phys. 110, 114511 (2011).CrossRefGoogle Scholar
  12. 12.
    Y. Yang, S. Seyedmohammadi, U. Kumar, D. Gnizak, E. Graddy, and A. Shaikh, Energy Procedia 8, 607 (2011).CrossRefGoogle Scholar
  13. 13.
    D.M. Huljic, D. Biro, R. Preu, C.C. Castillo, and R. Ludemann, in 28th IEEE PVSC (2000).Google Scholar
  14. 14.
    J.W. Jeong, A. Rohatgi, V. Yelundur, A. Ebong, M.D. Rosenblum, and J.P. Kalejs, IEEE Trans. Electron Devices 48, 2836 (2001).CrossRefGoogle Scholar
  15. 15.
    P.N. Vinod, Semicond. Sci. Technol. 20, 966 (2005).CrossRefGoogle Scholar
  16. 16.
    H.H. Berger, J. Electrochem. Soc. 119, 507 (1972).CrossRefGoogle Scholar
  17. 17.
    D.K. Schroder and D.L. Meier, IEEE Trans. Electron Devices ED-31, 637 (1984).CrossRefGoogle Scholar
  18. 18.
    D.L. Meier and D.K. Schroder, IEEE Trans. Electron Devices ED-31, 647 (1984).CrossRefGoogle Scholar
  19. 19.
    P.N. Vinod, J. Mater. Sci.: Mater. Electron. 22, 1248 (2011).Google Scholar
  20. 20.
    G.K. Reeves and H.B. Harrison, IEEE Electron Device Lett. 3, 111 (1982).CrossRefGoogle Scholar
  21. 21.
    E.G. Woelk, H. Krautle, and H. Beneking, IEEE Trans. Electron Devices 33, 19 (1986).CrossRefGoogle Scholar
  22. 22.
    A. Ebong and N. Chen, in 9th International Conference on High Capacity Optical Networks and Enabling Technologies (HONET) (2012).Google Scholar
  23. 23.
    C.P. Winsor, Proc. Natl. Acad. Sci. 18, 1 (1932).CrossRefGoogle Scholar
  24. 24.
    J.O. McCaldin and H. Sankur, Appl. Phys. Lett. 19, 524 (1971).CrossRefGoogle Scholar
  25. 25.
    I. Egry, Scr. Metall. Mater. 28, 1273 (1993).CrossRefGoogle Scholar
  26. 26.
    J.L. Murray and A.J. McAlister, Bull. Alloy Phase Diagr. 5, 74 (1984).CrossRefGoogle Scholar
  27. 27.
    T. Yoshikawa and K. Morita, J. Electrochem. Soc. 150, 465 (2003).CrossRefGoogle Scholar
  28. 28.
    O. Krause, H. Ryssel, and P. Pichler, J. Appl. Phys. 91, 5645 (2002).CrossRefGoogle Scholar
  29. 29.
    M.A. Trunov, M. Schoenitz, and E.L. Dreizin, Combust. Theory Model. 10, 603 (2006).CrossRefGoogle Scholar
  30. 30.
    F. Huster, in 20th EUPVSEC (2005).Google Scholar
  31. 31.
    V.A. Popovich, M.P.F.H.L. van Maris, M. Janssen, I.J. Bennett, and I.M. Richardson, Mater. Sci. Appl. 4, 118 (2013).Google Scholar
  32. 32.
    M. Balucani, L. Serenelli, K. Kholostov, P. Nenzi, M. Miliciani, F. Mura, M. Izzi, and M. Tucci, Energy Procedia 43, 100 (2013).CrossRefGoogle Scholar
  33. 33.
    E. Urrejola, K. Peter, H. Plagwitz, and G. Schubert, Appl. Phys. Lett. 98, 96 (2011).Google Scholar
  34. 34.
    J. Krause, R. Woehl, M. Rauer, C. Schmiga, J. Wilde, and D. Biro, Sol. Energy Mater. Solar Cells 95, 2151 (2011).CrossRefGoogle Scholar
  35. 35.
    T. Lauermann, B. Fröhlich, G. Hahn, and B. Terheiden, Prog. Photovolt. 23, 10 (2015).CrossRefGoogle Scholar
  36. 36.
    T.-S. Shih and Z.-B. Liu, Mater. Trans. 47, 1347 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUniversity of MosulMosulIraq
  2. 2.Solar Energy Research InstituteUniversiti Kebangsaan MalaysiaBangiMalaysia
  3. 3.Rich Winder, EMSIAlbuquerqueUSA

Personalised recommendations