Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6287–6297 | Cite as

Effects of Na+, K+ and B3+ Substitutions on the Electrical Properties of La10Si6O27 Ceramics

  • Sea-Fue WangEmail author
  • Yung-Fu Hsu
  • Yi-Le Liao
  • Ting-Ting Yang
  • Piotr Jasinski
Article
  • 13 Downloads

Abstract

Doping of Na and K at La sites and of B at Si site in La10Si6O27 with oxyapatite structure and fabrication of their ceramics were made by the solid-state reaction method. It was found that partial substitution of Na+ and K+ on La sites decreased the sinterability of the La10Si6O27 based ceramics, whereas partial substitution of B3+ on the Si site improved the sinterability. Na+ and K+ substitutions in La10−xNaxSi6O27−x and La10−xKxSi6O27−x can suppress second-phase La2SiO5 formation, and, in this study, as the x value of the two substitutions reached 0.7 and 0.5, respectively, the La2SiO5 phase disappeared. Doping of Na+, K+, and B3+ all displayed the hindering effect of grain growth during sintering. Compositions of La9.3Na0.7Si6O26.3, La9.5K0.5Si6O26.5, and La10Si5.5B0.5O26.75 revealed the highest electrical conductivity in each system. La10Si5.5B0.5O26.75 ceramic sintered at 1575°C showed the highest electrical conductivity at temperatures above 600°C among all the apatite ceramics evaluated. The electrical conductivities of La10Si5.5B0.5O26.75 at 700°C and 800°C reported 0.011 S cm−1 and 0.024 S cm−1, respectively, which are superior or comparable to previous studies, and their activation energies for conduction were calculated to be 0.80 eV.

Keywords

Electrolyte electrical conductivity microstructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the 5th Polish-Taiwanese/Taiwanese-Polish Joint Research Project PL-TW/V/4/2018 granted by the National Centre for Research and Development of Poland and Ministry of Science and Technology of Taiwan.

References

  1. 1.
    D. Marrero-Lopez, M.C. Martin-Sedeno, J. Pena-Martinez, J.C. Ruiz-Morales, P. Nunez, M.A.G. Aranda, and J.R. Ramos-Barrado, J. Power Sources 195, 2496 (2010).CrossRefGoogle Scholar
  2. 2.
    Y.X. Liu, S.F. Wang, Y.F. Hsu, C.H. Wang, J. Power Sources 381, 101 (2018).Google Scholar
  3. 3.
    J.W. Fergus, J. Power Sources 162, 30 (2006).CrossRefGoogle Scholar
  4. 4.
    P.R. Slater, J.E.H. Sansom, and J.R. Tolchard, Chem. Rec. 4, 373 (2005).CrossRefGoogle Scholar
  5. 5.
    S.F. Wang, Y.F. Hsu, and W.J. Lin, Int. J. Hydrogen Energy 38, 12018–12033 (2013).Google Scholar
  6. 6.
    K. Fukuda, T. Asaka, M. Okino, A. Berghout, E. Bechade, O. Masson, I. Jullien, and P. Thomas, Solid State Ionics 217, 40 (2012).CrossRefGoogle Scholar
  7. 7.
    S. Nakayama, T. Kageyama, H. Aono, and Y. Sadaoka, J. Mater. Chem. 5, 1801 (1995).CrossRefGoogle Scholar
  8. 8.
    J.E.H. Sansom and P.R. Slater, Solid State Ionics 167, 23 (2004).CrossRefGoogle Scholar
  9. 9.
    E. Kendrick, M.S. Islam, and P.R. Slater, J. Mater. Chem. 17, 3104 (2007).CrossRefGoogle Scholar
  10. 10.
    H. Yoshioka, J. Am. Ceram. Soc. 90, 3099 (2007).CrossRefGoogle Scholar
  11. 11.
    P. Thomas, H. Yoshida, N. Ishizawa, and K. Fukuda, Solid State Ionics 181, 1024 (2010).CrossRefGoogle Scholar
  12. 12.
    A. Jones, P. R. Slater, and M. Saiful Islam, Chem. Mater. 20, 5055 (2008).Google Scholar
  13. 13.
    Y. Nojiri, S. Tanase, M. Iwasa, H. Yoshioka, Y. Matsumura, and T. Sakai, J. Power Sources 195, 4059 (2010).CrossRefGoogle Scholar
  14. 14.
    A. Vincent, S.B. Savignat, and F. Gervais, J. Eur. Ceram. Soc. 27, 1187 (2007).CrossRefGoogle Scholar
  15. 15.
    Y. Feng, L. Dai, W. Meng, Z. He, Y. Li, and L. Wang, Ceram. Inter. 43, 289 (2017).CrossRefGoogle Scholar
  16. 16.
    G. Yin, H. Yin, X. Wang, M. Sun, L. Zhing, R. Cong, H. Zhu, W. Gao, and Q. Cui, J. Alloy. Compd. 611, 24 (2014).CrossRefGoogle Scholar
  17. 17.
    D.D.Y. Setsoafia, P. Hing, S.C. Jung, A.K. Azad, and C.M. Lim, Solid State Sci. 48, 163 (2015).CrossRefGoogle Scholar
  18. 18.
    Y. Ma, N. Fenineche, O. Elkedim, and M. Moliere, Mater. Phys. Mech. 32, 1 (2017).Google Scholar
  19. 19.
    A. Mineshige, H. Hayakawa, T. Nishimoto, A. Heguria, T. Yazawa, Y. Takayama, Y. Kagoshima, H. Takano, S. Takeda, and J. Matsui, Solid State Ion. 319, 223 (2018).CrossRefGoogle Scholar
  20. 20.
    A.R. Noviyanti, D.R. Eddy, F. Lastiyanti, I. Rahayul, D.G. Syarif, and T. Saragi, J. Phys. Conf. Series 1080, 012018 (2018).Google Scholar
  21. 21.
    T. Yang, H. Zhao, M. Fang, K. Świerczek, J. Wang, and Z. Du, J. Euro. Ceram. Soc. 39, 424 (2019).Google Scholar
  22. 22.
    N.A. Rostika, E.D. Rakhmawaty, H. Iwan, D. Muhammad, and S.D. Gustaman, Res. J. Chem. Environ. 22, 337 (2018).Google Scholar
  23. 23.
    H. Qayyimah H.H. Absah, A.H. Karim, M.S.A. Bakar, L.C. Ming, and A.K. Azad, Mater. Sci. Forum 889, 173 (2016).Google Scholar
  24. 24.
    H. Yoshioka, Chem. Lett. 33, 392 (2004).CrossRefGoogle Scholar
  25. 25.
    H. Yoshioka, Y. Nojiri, and S. Tanase, J. Solid State Ion. 179, 2165 (2008).CrossRefGoogle Scholar
  26. 26.
    S. Nakayama and M. Sakamoto, J. Eur. Ceram. Soc. 18, 1413 (1998).CrossRefGoogle Scholar
  27. 27.
    L. Santos-Gómez, L. León-Reina, J.M. Porras-Vázquez, E.R. Losilla, and D. Marrero-López, Solid State Ion 239, 1 (2013).CrossRefGoogle Scholar
  28. 28.
    R.D. Shannon, Acta Cryst. 32, 751 (1976).CrossRefGoogle Scholar
  29. 29.
    M. Sato, Y. Kono, and K. Uematsu, Chem. Lett. 23, 1425 (1994).CrossRefGoogle Scholar
  30. 30.
    M. Sato, Y. Kono, H. Ueda, K. Uematsu, and K. Toda, Solid State Ion 83, 249 (1996).CrossRefGoogle Scholar
  31. 31.
    X.G. Cao and S.P. Jiang, Int. J. Hydrogen Energy 39, 19093 (2014).CrossRefGoogle Scholar
  32. 32.
    D. Marrero-Lόpez, L. dos Santos-Gόmez, L. Leόn-Reina, and J. Canales-Vázquez, J. Power Sources 245, 107 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Sea-Fue Wang
    • 1
    Email author
  • Yung-Fu Hsu
    • 1
  • Yi-Le Liao
    • 1
  • Ting-Ting Yang
    • 1
  • Piotr Jasinski
    • 2
  1. 1.Department of Materials and Mineral Resources EngineeringNational Taipei University of TechnologyTaipeiTaiwan, ROC
  2. 2.Faculty of Electronics, Telecommunications and InformaticsGdansk University of TechnologyGdańskPoland

Personalised recommendations