Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6421–6430 | Cite as

Microwave Dielectric Properties of Ca4(La4Pr2)(SiO4)4(PO4)2O2 Ceramics Doped with Isovalent and Aliovalent Ions

  • Yung-Jen Lin
  • Sea-Fue WangEmail author
  • Bo-Cheng Lai
  • Hong-Bo Yang
  • Jia-Min Chen
Article
  • 14 Downloads

Abstract

Isovalent and aliovalent substitutions in the cationic and anionic sites of Ca4(La4Pr2)(SiO4)4(PO4)2O2 and Ba4(La4Pr2)(SiO4)4(PO4)2O2 ceramics were explored in this study. Substitutions of (SiO4)4− ions with (GeO4)4− in Ca4(La4Pr2)(SiO4)4(PO4)2O2 ceramic increased its densification temperature and thus led to a significant grain growth; however, replacement of Ca2+ and (PO4)3− ions by Mg2+ ions and (VO4)3− ions, respectively, decreased its densification temperature and resulted in grain refinement. Various rare-earth-metal and (WO4)2− ion substitutions on La3+ and Pr3+ and (PO4)3− sites, respectively, of Ca4(La4Pr2)(SiO4)4(PO4)2O2 ceramic had no impact on the sintering temperature. In the case of Ca4(La4Pr2)(SiO4)4(PO4)2O2 apatite with Mg2+ and (WO4)2− ion substitutions, second phases were observed in the x-ray diffraction patterns; however, only the pure hexagonal apatite phase with space group P63/m was visible in all the other systems. Overall, Ca4(La2Nd2Pr2)(SiO4)4(PO4)2O2 ceramic has the best microwave dielectric properties including εr = 14.2, Q × f = 28,745 GHz and τf = 0.9 ppm/°C. The densification temperatures of Ba4(La4Pr2)(SiO4)4(PO4)2O2 ceramics decreased as the SiO44− and PO43− ions were substituted by WO42− ions. The formation of the secondary phases BaWO4 and Ba2SiO4 decreased their dielectric constant and increased their Q × f values.

Keywords

Microwave dielectric ceramics apatite microstructure XRD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    W.W. Wersing, Curr. Opin. Solid State Mater. Sci. 1, 715 (1996).CrossRefGoogle Scholar
  2. 2.
    F.F. Manzillo, M. Ettorre, M.S. Lahti, K.T. Kautio, D. Lelaidier, E. Seguenot, R. Sauleau, and I.E.E.E. Trans, Microw. Theory Tech. 64, 2272 (2016).CrossRefGoogle Scholar
  3. 3.
    D. Thomas and M.T. Sebastian, J. Am. Ceram. Soc. 94, 2276 (2011).CrossRefGoogle Scholar
  4. 4.
    M.T. Sebastian, R. Ubic, and H. Jantunen, Int. Mater. Rev. 60, 392 (2015).CrossRefGoogle Scholar
  5. 5.
    S. Nakayama, T. Kageyama, H. Aono, and Y. Sadaoka, J. Mater. Chem. 5, 1801 (1995).CrossRefGoogle Scholar
  6. 6.
    S. Nakayama and M. Sakamoto, J. Euro. Ceram. Soc. 18, 1413 (1998).CrossRefGoogle Scholar
  7. 7.
    S.F. Wang, Y.F. Hsu, and W.J. Lin, Int. J. Hydrogen Energy 38, 12015 (2013).CrossRefGoogle Scholar
  8. 8.
    X. Cheng and L. Kuhn, Int. J. Nanomed. 2, 667 (2007).Google Scholar
  9. 9.
    F. Druon, S. Chenais, P. Raybaut, F. Balembois, P. Georges, R. Gaum, P.H. Haumesser, B. Viana, D. Vivien, S. Dhellemmes, V. Ortiz, and C. Larat, Opt. Lett. 27, 1914 (2002).CrossRefGoogle Scholar
  10. 10.
    B.M. Choudary, C. Sridhar, M.L. Kantam, G.T. Venkanna, and B. Sreedhar, J. Am. Chem. Soc. 127, 9948 (2005).CrossRefGoogle Scholar
  11. 11.
    R. El Quenzer, G. Panczer, C. Goutaudier, M.T. Cohen-Adad, G. Boulon, M. Trabelsi-Ayedi, and N. Kbir-Ariquib, Opt. Mater. 16, 301 (2001).CrossRefGoogle Scholar
  12. 12.
    A. Chartier, C. Meis, and J.D. Gale, Phys. Rev. B: Condens. Matter 64, 085110 (2001).CrossRefGoogle Scholar
  13. 13.
    D. Thomas, P. Abhilash, and M.T. Sebastian, J. Alloys Compd. 546, 72 (2013).CrossRefGoogle Scholar
  14. 14.
    J.B. Song, K.X. Song, J.S. Wei, H.X. Lin, J.M. Xu, J. Wu, and W.T. Su, J. Alloys Compd. 731, 264 (2018).CrossRefGoogle Scholar
  15. 15.
    K.M. Manu, C. Karthik, L.C. Leu, K.A. Lazar, R. Ubic, and M.T. Sebastian, J. Am. Ceram. Soc. 96, 1504 (2013).CrossRefGoogle Scholar
  16. 16.
    S. Thomas and M.T. Sebastian, J. Am. Ceram. Soc. 92, 2975 (2009).CrossRefGoogle Scholar
  17. 17.
    B.W. Hakki and P.D. Coleman, IEEE Trans. Microw. Theory Tech. 8, 402 (1960).CrossRefGoogle Scholar
  18. 18.
    W.E. Courtney, IEEE Trans. Microw. Theory Tech. MIT-18 8, 476 (1970).CrossRefGoogle Scholar
  19. 19.
    R.D. Shannon, J. Appl. Phys. 73, 348 (1993).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Yung-Jen Lin
    • 2
  • Sea-Fue Wang
    • 1
    Email author
  • Bo-Cheng Lai
    • 1
  • Hong-Bo Yang
    • 2
  • Jia-Min Chen
    • 2
  1. 1.Department of Materials and Minerals Resources EngineeringNational Taipei University of TechnologyTaipeiTaiwan, ROC
  2. 2.Department of Materials EngineeringTatung UniversityTaipeiTaiwan

Personalised recommendations