Formation and Evolution of Cu-Sn Intermetallic Compounds in Ultrasonic-Assisted Soldering

  • Weiyuan YuEmail author
  • Yingzong Liu
  • Yun Liu


Interfacial intermetallic compounds (IMCs) help determine the reliability of soldered joints; thus, it is necessary to understand their formation and evolution. This study focus on Cu-Sn IMCs formed in ultrasonic-assisted soldering (UAS), wherein the formation of IMCs at the Sn/Cu interface is controlled by changing the ultrasonic action time. After being subjected to ultrasonic vibration, the IMCs at the Cu/Sn solid–liquid interface are continuously crushed, dissolved, and formed, which occurs successively in the Cu6Sn5 and Cu3Sn layers. The relationship between the thickness of the IMC layer and ultrasonic action time in Cu-Sn samples was identified. Simultaneously, the growth pattern of Cu6Sn5 grains in the Sn solder is transformed, and the tin solder (Sn solder) is kept in a dynamic non-equilibrium state with IMCs at the Sn/Cu interface through UAS. More Cu6Sn5 grains formed and were evenly distributed in the joint after cooling, which improves the performance of the joints.


Ultrasonic-assisted soldering interfacial intermetallic compounds microstructure tin solder 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported financially by the National Natural Science Foundation of China (Nos.51465032 and 51665031).


  1. 1.
    X. Ma, Y. Qian, and F. Yoshida, J. Alloys Compd. 334, 224 (2002).CrossRefGoogle Scholar
  2. 2.
    Y. Zhou, F. Liu, and H. Wang, Polym. Compos. 38, 803 (2017).CrossRefGoogle Scholar
  3. 3.
    C. Hang, Y. Tian, R. Zhang, and D. Yang, J. Mater. Sci. Mater. Electron. 24, 3905 (2013).CrossRefGoogle Scholar
  4. 4.
    N.S. Bosco and F.W. Zok, Acta Mater. 52, 2965 (2004).CrossRefGoogle Scholar
  5. 5.
    T. Laurila, V. Vuorinen, and M. Paulasto-Kröckel, Mater. Sci. Eng. R Rep. 68, 1 (2010).CrossRefGoogle Scholar
  6. 6.
    T.H. Kim, J. Yum, S.J. Hu, J.P. Spicer, and J.A. Abell, CIRP Ann. 60, 17 (2011).CrossRefGoogle Scholar
  7. 7.
    A. Panteli, J.D. Robson, I. Brough, and P.B. Prangnell, Mater. Sci. Eng. A 556, 31 (2012).CrossRefGoogle Scholar
  8. 8.
    W. Guo, T. Luan, X. Leng, J. He, and J. Yan, Trans. Nonferrous Met. Soc. China 27, 962 (2017).CrossRefGoogle Scholar
  9. 9.
    K.M. Hafez, M.H. El-Sayed, and M. Naka, Sci. Technol. Weld. Joining 10, 125 (2013).CrossRefGoogle Scholar
  10. 10.
    W. Cui, C. Wang, J. Yan, Z. Wang, and D. Wei, Ultrason. Sonochem. 20, 196 (2013).CrossRefGoogle Scholar
  11. 11.
    Y. Xiao, H. Ji, M. Li, and J. Kim, Mater. Des. 52, 740 (2013).CrossRefGoogle Scholar
  12. 12.
    M. Li, Z. Li, Y. Xiao, and C. Wang, Appl. Phys. Lett. 102, 094104 (2013).CrossRefGoogle Scholar
  13. 13.
    B.-H. Kwak, M.-H. Jeong, J.-W. Kim, B. Lee, H.-J. Lee, and Y.-B. Park, Microelectron. Eng. 89, 65 (2012).CrossRefGoogle Scholar
  14. 14.
    J.F. Li, P.A. Agyakwa, and C.M. Johnson, Acta Mater. 59, 1198 (2011).CrossRefGoogle Scholar
  15. 15.
    H. Liu, K. Wang, K.E. Aasmundtveit, and N. Hoivik, J. Electron. Mater. 41, 2453 (2012).CrossRefGoogle Scholar
  16. 16.
    M.S. Park, S.L. Gibbons, and R. Arróyave, Microelectron. Reliab. 54, 1401 (2014).CrossRefGoogle Scholar
  17. 17.
    B.-J. Kim, G.-T. Lim, J. Kim, K. Lee, Y.-B. Park, H.-Y. Lee, and Y.-C. Joo, J. Electron. Mater. 39, 2281 (2010).CrossRefGoogle Scholar
  18. 18.
    K.S. Suslick, Sci. Am. 260, 80 (1989).CrossRefGoogle Scholar
  19. 19.
    S.D. Hyman, T.J. Lazio, N.E. Kassim, P.S. Ray, C.B. Markwardt, and F. Yusef-Zadeh, Nature 434, 50 (2005).CrossRefGoogle Scholar
  20. 20.
    E.A. Brujan, T. Ikeda, and Y. Matsumoto, Exp. Therm. Fluid Sci. 32, 1188 (2008).CrossRefGoogle Scholar
  21. 21.
    K.A. Jackson, Prog. Solid State Chem. 4, 53 (1967).CrossRefGoogle Scholar
  22. 22.
    W.K. Choi, S.-Y. Jang, J.H. Kim, K.-W. Paik, and H.M. Lee, J. Mater. Res. 17, 597 (2011).CrossRefGoogle Scholar
  23. 23.
    M. Yang, M. Li, and C. Wang, Intermetallics 25, 86 (2012).CrossRefGoogle Scholar
  24. 24.
    K.S. Suslick, D.A. Hammerton, and R.E. Cline, J. Am. Chem. Soc. 89 (1986).Google Scholar
  25. 25.
    X. Leng, C. Wang, Y. Zhang, X. Chen, and J. Yan, Trans. Nonferrous Met. Soc. China 21, s290 (2011).CrossRefGoogle Scholar
  26. 26.
    T. Luan, W. Guo, S. Yang, Z. Ma, J. He, and J. Yan, J. Mater. Process. Technol. 248, 123 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Gansu Province, Advanced Processing and Recycling of Nonferrous MetalsLanzhou University of TechnologyLanzhouPeople’s Republic of China

Personalised recommendations