Journal of Electronic Materials

, Volume 48, Issue 10, pp 6203–6215 | Cite as

Investigation of Structural, Optical and Electrical Properties of Lead-Free K0.5Na0.5NbO3 Ceramics Synthesized by Sol–Gel Reaction Route

  • Shammi KumarEmail author
  • Nagesh Thakur


In this paper, polycrystalline lead-free K0.5Na0.5NbO3 (KNN) ceramics were manufactured by a sol–gel reaction route. The effect of calcination temperature on optical, photoluminescence and electrical parameters has been studied. The optical parameters were investigated by using reflectance spectroscopy of ceramics which revealed a red shift in the wavelength with a rise in calcination temperature. The photoluminescence spectrum has an emission band in the UV–visible region at room temperature. Phase determination of KNN ceramics was analyzed by using an x-ray diffractometer. The microstructure and surface morphology of the KNN ceramic were studied by field emission scanning electron microscopy. IV characteristics have been studied which revealed an ohmic conduction mechanism at higher applied electric voltages. The dependence of dielectric constant, AC conductivity and impedance plots on frequency have been studied at room temperature. The cole–cole plots have a linear curve, which disclosed that KNN ceramics have good insulating properties at room temperature.


Sol–gel route optical band gap photoluminescence impedance spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Conflict of interest

The authors state that they have no conflict of interest.


  1. 1.
    V. Gupta, M. Sharma, and N. Thakur, J. Intell. Mater. Syst. Struct. 21, 1227 (2010).CrossRefGoogle Scholar
  2. 2.
    D. Peng, X. Wang, C. Xu, X. Yao, J. Lin, and T. Sun, J. Am. Ceram. Soc. 96, 184 (2013).CrossRefGoogle Scholar
  3. 3.
    X. Wu, S. Lu, and K.W. Kwok, J. Alloys Compd. 695, 3573 (2017).CrossRefGoogle Scholar
  4. 4.
    M. Peddigari, B. Sindam, K.C.J. Raju, and P.J. Dobbidi, J. Am. Ceram. Soc. 98, 1444 (2015).CrossRefGoogle Scholar
  5. 5.
    Y. Saito, H. Takao, T. Tani, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature 432, 84 (2004).CrossRefGoogle Scholar
  6. 6.
    X. Zeng, J. Li, A.L.N. Stevels, and L. Liu, J. Clean. Prod. 51, 80 (2013).CrossRefGoogle Scholar
  7. 7.
    Y.L. Wang, Y.Q. Lu, M.J. Wu, D. Wang, and Y.X. Li, Ceram. Int. 38, S295 (2012).CrossRefGoogle Scholar
  8. 8.
    V.J. Tennery and K.W. Hang, J. Appl. Phys. 39, 4749 (1968).CrossRefGoogle Scholar
  9. 9.
    A.E. Mahmoud, A.S. Afify, and S.K.S. Parashar, J. Mater. Sci. Mater. Electron. 30, 2659 (2019).CrossRefGoogle Scholar
  10. 10.
    H. Yang, Y. Lin, J. Zhu, and F. Wang, Powder Technol. 196, 233 (2009).CrossRefGoogle Scholar
  11. 11.
    A. Chowdhury, J. Bould, Y. Zhang, C. James, and S. Milne, J. Nanopart. Res. 12, 209 (2010).CrossRefGoogle Scholar
  12. 12.
    S. Kumar, M. Shandilya, S. Thakur, and N. Thakur, J. Sol–Gel. Sci. Technol. 88, 646 (2018).CrossRefGoogle Scholar
  13. 13.
    C. Aydın, O.A. Al-Hartomy, A.A. Al-Ghamdi, F. Al-Hazmi, I.S. Yahia, F. El-Tantawy, and F. Yakuphanoglu, J. Electroceram. 29, 155 (2012).CrossRefGoogle Scholar
  14. 14.
    A. Ullah, C.W. Ahn, A. Hussain, S.Y. Lee, and I.W. Kim, J. Am. Ceram. Soc. 94, 3915 (2011).CrossRefGoogle Scholar
  15. 15.
    R. Choudhary, K. Perez, P. Bhattacharya, and R. Katiyar, Mater. Chem. Phys. 105, 286 (2007).CrossRefGoogle Scholar
  16. 16.
    B.K. Das, T. Das, K. Parashar, S.K.S. Parashar, R. Kumar, H.K. Choudhary, V.B. Khopkar, A.V. Anupama, and B. Sahoo, Mater. Chem. Phys. 221, 419 (2019).CrossRefGoogle Scholar
  17. 17.
    F. Yakuphanoglu, J. Alloys Compd. 507, 184 (2010).CrossRefGoogle Scholar
  18. 18.
    M. Okutan, S.E. San, O. Köysal, and F. Yakuphanoglu, Physica B 362, 180 (2005).CrossRefGoogle Scholar
  19. 19.
    P. Sharma and S.C. Katyal, J. Phys. D Appl. Phys. 40, 2115 (2007).CrossRefGoogle Scholar
  20. 20.
    C.W. Ahn, S.Y. Lee, H.J. Lee, A. Ullah, E.D. Jeong, J.S. Choi, B.H. Park, and I.W. Kim, J. Phys. D Appl. Phys. 42, 215304 (2009).CrossRefGoogle Scholar
  21. 21.
    G.D. Mahana and M. Bartkowiak, Appl. Phys. Lett. 74, 953 (1999).CrossRefGoogle Scholar
  22. 22.
    A.K. Jonscher, Thin Solid Films 100, 329 (1983).CrossRefGoogle Scholar
  23. 23.
    K. Funke, Prog. Solid State Chem. 22, 111 (1993).CrossRefGoogle Scholar
  24. 24.
    K. Kumari, K. Prasad, and R.N.P. Choudhary, J. Alloys Compd. 453, 325 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsHimachal Pradesh UniversityShimlaIndia

Personalised recommendations