Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6446–6450 | Cite as

Band Offset and Electron Affinity of Monolayer MoSe2 by Internal Photoemission

  • Qin ZhangEmail author
  • Siyuan Zhang
  • Brent A. Sperling
  • Nhan V. Nguyen
Article
  • 29 Downloads

Abstract

The electron energy band alignment of the monolayer MoSe2/oxide/Si system is characterized by internal photoemission spectroscopy, where the oxide is Al2O3 or SiO2. Raman and photoluminescence spectroscopic measurements confirm the high quality of monolayer MoSe2 exfoliated with gold film as medium. At the oxide flat-band condition, the band offset from the monolayer MoSe2 valence band maximum to the Al2O3 and SiO2 conduction band minimum are measured to be (4.10 ± 0.05) eV and (4.80 ± 0.05) eV, respectively. By referencing the recently reported band gap value of 2.18 eV for monolayer MoSe2, we obtain the electron affinity of monolayer MoSe2 to be (3.8 ± 0.1) eV on Al2O3/Si and (3.5 ± 0.1) eV on SiO2/Si. It is believed that the results from this study will help accelerate the design of electronic and optoelectronic devices that employ this class of two-dimensional materials.

Keywords

Internal photoemission band offset electron affinity 2D material 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was performed in part under the financial assistance Award 70NANB17H264 from the U.S. Department of Commerce, National Institute of Standards and Technology. Device fabrication was done in part at the NIST Center for Nanoscale Science and Technology.

References

  1. 1.
    G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, and L. Colombo, Nat. Nanotechnol. 9, 768 (2014).CrossRefGoogle Scholar
  2. 2.
    F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, Nat. Photonics 8, 899 (2014).CrossRefGoogle Scholar
  3. 3.
    M. Li, D. Esseni, J.J. Nahas, D. Jena, and H.G. Xing, IEEE J. Electron Devices Soc. 3, 200 (2015).CrossRefGoogle Scholar
  4. 4.
    X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, Nat. Nanotechnol. 9, 682 (2014).CrossRefGoogle Scholar
  5. 5.
    J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, Appl. Phys. Lett. 102, 012111 (2013).CrossRefGoogle Scholar
  6. 6.
    V.V. Afanasev and A. Stesmans, J. Appl. Phys. 102, 081301 (2007).CrossRefGoogle Scholar
  7. 7.
    K. Xu, C. Zeng, Q. Zhang, R. Yan, P. Ye, K. Wang, A.C. Seabaugh, H.G. Xing, J.S. Suehle, C.A. Richter, D.J. Gundlach, and N.V. Nguyen, Nano Lett. 13, 131 (2013).CrossRefGoogle Scholar
  8. 8.
    R. Yan, Q. Zhang, W. Li, I. Calizo, T. Shen, C.A. Richter, A.R. Hight-Walker, X. Liang, A. Seabaugh, D. Jena, H.G. Xing, D.J. Gundlach, and N.V. Nguyen, Appl. Phys. Lett. 101, 022105 (2012).CrossRefGoogle Scholar
  9. 9.
    V.V. Afanas’ev, D. Chiappe, C. Huyghebaert, I. Radu, S. De Gendt, M. Houssa, and A. Stesmans, Micorelectron. Eng. 147, 294 (2015).CrossRefGoogle Scholar
  10. 10.
    I. Shlyakhov, J. Chai, M. Yang, S.J. Wang, V.V. Afanas’ev, M. Houssa, and A. Stesmans, APL Mater. 6, 026801 (2018).CrossRefGoogle Scholar
  11. 11.
    S.B. Desai, S.R. Madhvapathy, M. Amani, D. Kiriya, M. Hettick, M. Tosun, Y. Zhou, M. Dubey, J.W. Ager III, D. Chrzan, and A. Javey, Adv. Mater. 28, 4053 (2016).CrossRefGoogle Scholar
  12. 12.
    Q. Zhang, G. Zhou, H.G. Xing, A.C. Seabaugh, K. Xu, H. Sio, O.A. Kirillov, C.A. Richter, and N.V. Nguyen, Appl. Phys. Lett. 100, 102104 (2012).CrossRefGoogle Scholar
  13. 13.
    Q. Zhang, R. Li, R. Yan, T. Kosel, H.G. Xing, A.C. Seabaugh, K. Xu, O.A. Kirillov, D.J. Gundlach, C.A. Richter, and N.V. Nguyen, Appl. Phys. Lett. 102, 012101 (2013).CrossRefGoogle Scholar
  14. 14.
    N.V. Nguyen, O. Kirillov, H.D. Xiong, and J.S. Suehle, AIP Proc. 931, 308 (2007).CrossRefGoogle Scholar
  15. 15.
    P. Tonndorf, R. Schmidt, P. Boettger, X. Zhang, J. Boerner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D.R.T. Zahn, S.M. Vasconcellos, and R. Bratschitsch, Opt. Express 21, 4908 (2013).CrossRefGoogle Scholar
  16. 16.
    Q. Zhang, S. Zhang, B.A. Sperling, J. Masler, S. Pookpanratana, C.A. Hacker, D.J. Gundlach, and N.V. Nguyen, in 48th IEEE Semiconductor Interface Specialists Conference (SISC) (2017).Google Scholar
  17. 17.
    R. Yan, Q. Zhang, O.A. Kirillov, W. Li, J. Basham, A. Boosalis, X. Liang, D. Jena, C.A. Richter, A. Seabaugh, D.J. Gundlach, H.G. Xing, and N.V. Nguyen, Appl. Phys. Lett. 102, 123106 (2013).CrossRefGoogle Scholar
  18. 18.
    M.M. Ugeda, A.J. Bradley, S.-F. Shi, F.H. da Jornada, Y. Zhang, D.Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S.G. Louie, and M.F. Crommie, Nat. Mater. 13, 1091 (2014).CrossRefGoogle Scholar
  19. 19.

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2019

Authors and Affiliations

  1. 1.Theiss ResearchLa JollaUSA
  2. 2.Nanoscale Device Characterization DivisionNational Institute of Standards and TechnologyGaithersburgUSA
  3. 3.Chemical Science DivisionNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations