Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Synthesis and Validation of a Cu Meta-Based Wideband Microwave Absorber on an Antenna Array

Abstract

Meta copper (Cu) material called nanotwin crystalline copper metal (C2101, Kopu Tharma Loham) fabricated on the basis of ancient Indian metallurgical techniques has been originally used here as an absorbing material. The research attempted here is to explore the electromagnetic properties experimentally over a wide range of frequency covering X, Ku, K and Ka bands. The dielectric constant and loss tangent of Cu meta material are high in the X range making it a good candidate for the successful design of an absorber. Along with that, the melting point of Cu meta is also increased to 1135°C which is otherwise 1085°C as per international copper standards, hence making the absorber thermally stable. The particle size of Cu meta material, when measured with the x-ray diffraction method, is decreased from 50 μm to 100 nm, placing it in a nanomaterial category. An absorption bandwidth of 35.58 GHz is obtained, ranging from 1 GHz to 36.58 GHz. After testing, the absorber is finally integrated with a two-element rectangular patch array for substantial applicability. The radiation pattern plot shows a remarkable reduction in side lobe level of the array from 3.737 dB to 1.158 dB after placing the Cu meta material absorber. The beam width narrows down from 70° to 44° with a slight increase in the amplitude of the major lobe from 5.494 dB to 6.341 dB while retaining the pattern symmetry.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    H. Vasquez, L. Espinoza, K. Lozano, H. Foltz, and S. Yang, IEEE EMC Soc. Newslett. 220, 62 (2009).

  2. 2.

    D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.G. Ren, J.H. Wang, and Z.M. Li, Adv. Funct. Mater. 25, 559 (2015).

  3. 3.

    H. Steyskal and J. Herd, IEEE Trans. Antennas Propag. 38, 1971 (1990).

  4. 4.

    I.J. Gupta and A.A. Ksienski, IEEE Trans. Antennas Propag. 31, 785 (1983).

  5. 5.

    F. Tokan and F. Gunes, IET Microw. Antennas Propag. 5, 127 (2011).

  6. 6.

    A.F. Morabito, A. Massa, P. Rocca, and T. Isernia, IEEE Trans. Antennas Propag. 60, 3622 (2012).

  7. 7.

    J. Liu, A.B. Gershman, Z.-Q. Luo, and K.M. Wong, IEEE Signal Process. Lett. 10, 331 (2003).

  8. 8.

    Z.U. Khan, A. Naveed, I.M. Qureshi, and F. Zaman, IEICE Electron. Express 8, 1008 (2011).

  9. 9.

    S. Rani, A. Marwaha, and S. Marwaha, J. Nanophoton. 12, 036012 (2018).

  10. 10.

    M. Mouhamadou, P. Vaudon, and M. Rammal, Progr. Electromag. Res. 60, 95 (2006).

  11. 11.

    T. Liu, Y. Pang, M. Zhu, and S. Kobayashi, Nanoscale 6, 2447 (2014).

  12. 12.

    L. Wang, Y. Huang, X. Sun, H. Huang, P. Liu, M. Zong, and Y. Wang, Nanoscale 6, 3157 (2014).

  13. 13.

    Meng Zhang, Tian Jiang, and Yijun Feng, J. Electromag. Anal. Appl. 6, 203 (2014).

  14. 14.

    X. Qin, Y. Cheng, K. Zhou, S. Huang, and X. Hui, Sci. Res. J. Mater. Sci. Chem. Eng. 1, 8 (2013).

  15. 15.

    Y. Liu, X. Liu, and X. Wang, J. Alloys Compd. 584, 249 (2013).

  16. 16.

    K. Rubrice, X. Castel, M. Himdi, and P. Parneix, J. Mater. 825, 1 (2016).

  17. 17.

    T. Wang, P. Wang, Y. Wang, and L. Qiao, Mater. Des. 95, 486 (2016).

  18. 18.

    G. Xin, H. Da-Wei, W. Yong-Sheng, Z. Wen, Z. Yi-Kang, and L. Shu-Lei, Chin. Phys. B 24, 1 (2013).

  19. 19.

    Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, and Y. Chen, Adv. Mater. 2015, 1 (2015).

  20. 20.

    H. Kaur, C. Singh, A. Marwaha, and S.B. Narang, J. Mater. Sci. Mater. Electron. 29, 14995 (2018).

  21. 21.

    T. Theivasanthi and M. Alagar, Arch. Phy. Res. 1, 112 (2010).

  22. 22.

    A.M. Nicolson and G.F. Ross, IEEE Trans. Instrum. Meas. 19, 377 (1970).

  23. 23.

    J. Feng, F. Pu, Z. Li, X. Li, X. Hu, and J. Bai, Carbon 104, 214 (2016).

  24. 24.

    K. Pubby, S.S. Meena, S.M. Yusuf, and S.B. Narang, J. Magn. Magn. Mater. 466, 430 (2018).

  25. 25.

    R.S. Meena, S. Bhattacharya, and R. Chatterjee, J. Magn. Magn. Mater. 322, 2908 (2010).

  26. 26.

    A. Teber, K. Cil, T. Yilmaz, B. Eraslan, D. Uysal, G.S. Abdul, H. Baykal, and R. Bansal, Aerospace 4, 1 (2017).

  27. 27.

    D.J. Gogoe and N.S. Bhattacharyya, Int. J. Res. Eng. Technol. 6, 47 (2017).

Download references

Acknowledgments

This work was supported by Rasakalpa Ancient Indian Technology Development Center (RAITDC), Andhra Pradesh, India, for fabricating the C2101 Cu meta material, Guru Nanak Dev University (GNDU), Amritsar, India, for characterization of the material and the Department of Electronics and Communication Engineering of Sant Longowal Institute of Engineering and Technology (SLIET), Longowal, Sangrur, for providing access to High-Frequency Structure Simulator (HFSS) software.

Author information

Correspondence to Surekha Rani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rani, S., Marwaha, A., Marwaha, S. et al. Synthesis and Validation of a Cu Meta-Based Wideband Microwave Absorber on an Antenna Array. Journal of Elec Materi 49, 1601–1610 (2020). https://doi.org/10.1007/s11664-019-07395-0

Download citation

Keywords

  • Absorption
  • antenna array
  • meta material
  • permittivity
  • permeability