Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6063–6068 | Cite as

Optical Properties of MBE-Grown Hg1−xCdxSe

  • W. W. Pan
  • Z. K. Zhang
  • W. LeiEmail author
  • L. Faraone
U.S. Workshop on Physics and Chemistry of II-VI Materials 2018
  • 16 Downloads
Part of the following topical collections:
  1. U.S. Workshop on Physics and Chemistry of II-VI Materials 2018

Abstract

In this work, we present a study on the temperature-dependent infrared absorption spectra of Hg1−xCdxSe grown by molecular beam epitaxy (MBE) on GaSb (211) substrate, having a nominal x-value of 0.21. For temperatures below 200 K, the observed optical bandgap is found to correspond to the Fermi energy level rather than the intrinsic bandgap, which is quantitatively explained by the Burstein–Moss shift due to the presence of a background electron concentration of 3.5 × 1016 cm−3. In addition, empirical formulae for calculating both the absorption edge and intrinsic absorption coefficient in the Kane region have been derived from the previously reported absorption spectra of Bridgeman-grown Hg1−xCdxSe samples (0.15 ≤ x ≤ 0.3). By employing the empirical expressions, the infrared transmission spectra have been modeled based on the characteristic matrix method, and the x value profile of the sample along the growth direction has been determined, which is in good agreement with the experimental results obtained from secondary ion mass spectrometry (SIMS) depth profiling combined with Rutherford backscattering spectrometry (RBS).

Keywords

HgCdSe FTIR transmission absorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Australian Research Council (FT130101708, DP170104562, and LE170100233), and a Research Collaboration Awards from the University of Western Australia. Facilities used in this work are supported by the WA node of the Australian National Fabrication Facility (ANFF).

References

  1. 1.
    K. Doyle, C.H. Swartz, J.H. Dinan, T.H. Myers, G. Brill, Y.P. Chen, B.L. VanMil, and P. Wijewarnasuriya, J. Vac. Sci. Technol. 31, 03C124 (2013).CrossRefGoogle Scholar
  2. 2.
    K. Doyle, Development of HgCdSe for Third Generation Focal Plane Arrays using Molecular Beam Epitaxy. Texas State University San Marcos United States, 2013.Google Scholar
  3. 3.
    G.N. Brill, Y.P. Chen, P.S. Wijewarnasuriya, and N.K. Dhar, Phys. Status Solidi A 209, 1423 (2012).CrossRefGoogle Scholar
  4. 4.
    Y.P. Chen, G. Brill, D. Benson, P. Wijewarnasuriya, and N. Dhar, Proc SPIE 8155, 815511 (2011).CrossRefGoogle Scholar
  5. 5.
    C.J. Summers and J.G. Broerman, Phys. Rev. B 21, 559 (1980).CrossRefGoogle Scholar
  6. 6.
    A. Rogalski, Prog. Quantum Electron. 27, 59 (2003).CrossRefGoogle Scholar
  7. 7.
    A. Rogalski, J. Antoszewski, and L. Faraone, J. Appl. Phys. 105, 091101 (2009).CrossRefGoogle Scholar
  8. 8.
    W. Lei, J. Antoszewski, and L. Faraone, Appl. Phys. Rev. 2, 041303 (2015).CrossRefGoogle Scholar
  9. 9.
    J.P. Zanatta, G. Badano, C. Ph Ballet, J. Largeron, J. Baylet, O. Gravrand, J. Rothman, P. Castelein, J.P. Chamonal, and A. Million, J. Electron. Mater. 35, 1231 (2006).CrossRefGoogle Scholar
  10. 10.
    L. He, L. Chen, Y. Wu, X.L. Fu, Y.Z. Wang, J. Wu, M.F. Yu, J.R. Yang, R.J. Ding, and X.N. Hu, J. Cryst. Growth 301, 268 (2007).CrossRefGoogle Scholar
  11. 11.
    M. Reddy, J.M. Peterson, T. Vang, J.A. Franklin, M.F. Vilela, K. Olsson, E.A. Patten, W.A. Radford, J.W. Bangs, and L. Melkonian, J. Electron. Mater. 40, 1706 (2011).CrossRefGoogle Scholar
  12. 12.
    M. Carmody, A. Yulius, D. Edwall, D. Lee, E. Piquette, R. Jacobs, D. Benson, A. Stoltz, J. Markunas, and A. Almeida, J. Electron. Mater. 41, 2719 (2012).CrossRefGoogle Scholar
  13. 13.
    J. Wenisch, D. Eich, H. Lutz, T. Schallenberg, R. Wollrab, and J. Ziegler, J. Electron. Mater. 41, 2828 (2012).CrossRefGoogle Scholar
  14. 14.
    W. Lei, R.J. Gu, J. Antoszewski, J. Dell, and L. Faraone, J. Electron. Mater. 43, 2788 (2014).CrossRefGoogle Scholar
  15. 15.
    W. Lei, R.J. Gu, J. Antoszewski, J. Dell, G. Neusser, M. Sieger, B. Mizaikoff, and L. Faraone, J. Electron. Mater. 44, 3180 (2015).CrossRefGoogle Scholar
  16. 16.
    W. Lei, Y.L. Ren, I. Madni, and L. Faraone, Infrared Phys. Technol. 92, 96 (2018).CrossRefGoogle Scholar
  17. 17.
    C. R. Whitsett, J. G. Broerman, and C. J. Summers, in Semiconductors and Semimetals (Elsevier, 1981), Vol. 16, pp. 53.Google Scholar
  18. 18.
    C. R. Whitsett, J. G. Broerman, and C. J. Summers, in Defects, (HgCd)Se, (HgCd)Te (1981), pp. 53.Google Scholar
  19. 19.
    G. Brill, Y. Chen, and P. Wijewarnasuriya, Proc Spie 8155, 815512 (2011).CrossRefGoogle Scholar
  20. 20.
    G. Brill, Y. Chen, and P. Wijewarnasuriya, J. Electron. Mater. 40, 1679 (2011).CrossRefGoogle Scholar
  21. 21.
    F. C. Peiris, M. V. Lewis, G. Brill, Kevin Doyle and T. H. Myers, J. Electron. Mater. 47, 5715 (2018).Google Scholar
  22. 22.
    I. Madni, G.A. Umana-Membreno, W. Lei, and L. Faraone, J. Electron. Mater. 47, 5691 (2018).CrossRefGoogle Scholar
  23. 23.
    W. Lei, Y.L. Ren, I. Madni, G.A. Umana-Membreno, and L. Faraone, Infrared Phys. Technol. 92, 197 (2018).CrossRefGoogle Scholar
  24. 24.
    F.C. Peiris, G. Brill, K. Doyle, B. VanMil, and T.H. Myers, J. Electron. Mater. 43, 3056 (2014).CrossRefGoogle Scholar
  25. 25.
    Y. Lansari, J.W. Cook, and J.F. Schetzina, J. Electron. Mater. 22, 809 (1993).CrossRefGoogle Scholar
  26. 26.
    J. Chu, S. Xu, and D. Tang, Appl. Phys. Lett. 43, 1064 (1983).CrossRefGoogle Scholar
  27. 27.
    E. Burstein, Phys. Rev. 93, 632 (1954).CrossRefGoogle Scholar
  28. 28.
    T. S. Moss, In Proc. Phys. Soc. London, Sect. B 67, 775 (1954).Google Scholar
  29. 29.
    J. Chu, S. Xu, and D. Tang, Phys. Scr. 1986, 37 (1986).CrossRefGoogle Scholar
  30. 30.
    M. Daraselia, M. Carmody, D.D. Edwall, and T.E. Tiwald, J. Electron. Mater. 34, 762 (2005).CrossRefGoogle Scholar
  31. 31.
    J.H. Chu, B. Li, K. Liu, and D.Y. Tang, J. Appl. Phys. 75, 1234 (1994).CrossRefGoogle Scholar
  32. 32.
    E.O. Kane, J. Phys. Chem. Solids 1, 249 (1957).CrossRefGoogle Scholar
  33. 33.
    J.R. Lindle, W.W. Bewley, I. Vurgaftman, J.R. Meyer, J.L. Johnson, M.L. Thomas, and W.E. Tennant, Phys. E 20, 558 (2004).CrossRefGoogle Scholar
  34. 34.
    R.H. Sewell, J.M. Dell, C.A. Musca, and L. Faraone, Microelectronics: Design Technology, and Packaging 5274, 215 (2004).Google Scholar
  35. 35.
    F. Urbach, Phys. Rev. 92, 1324 (1953).CrossRefGoogle Scholar
  36. 36.
    D.E. Aspnes, Thin Solid Films 89, 249 (1982).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Electrical Electronic and Computer EngineeringThe University of Western AustraliaCrawleyAustralia

Personalised recommendations