Advertisement

Characterization of (111)B and (211)B CdZnTe Substrates for HgCdTe Growth

  • R. HaakenaasenEmail author
  • O. Lauten
  • E. Selvig
  • K. O. Kongshaug
  • E. J. Røer
  • R. W. Hansen
U.S. Workshop on Physics and Chemistry of II-VI Materials 2018
  • 3 Downloads
Part of the following topical collections:
  1. U.S. Workshop on Physics and Chemistry of II-VI Materials 2018

Abstract

We have studied state-of-the-art CdZnTe (211)B and (111)B substrates and compared them to each other and to substrates from an alternative vendor. The CdZnTe surface has been characterized both as-received and after growth preparation procedures using dark field optical microscopy, scanning electron microscopy, energy-dispersive x-ray spectroscopy, atomic force microscopy, Fourier transform infrared transmission spectroscopy, and secondary ion mass spectroscopy. From these measurements we have obtained densities of particles and morphological defects with size > 0.5 μm, densities of small particles/features with size ≤ 100 nm, and substrate/film interface impurities. The state-of-the-art substrates all have remains of silica grit polishing particles around the edges. The as-received (111)B substrates had very few particles or morphological defects on the surface, but a Br:methanol surface preparation etch exposed a large number of features with sizes ≤ 100 nm. Some of these were silica grit particles, but most of them were Te precipitates. The (111)B substrate from an alternative vendor had a lot of different particles, stains, and voids. It improved significantly after a fine-polishing procedure, but still had the surface with most defects after surface preparation. The state-of-the-art (211)B had the largest as-received density of small features, but after Br:methanol etching this density (of Te precipitates and silica grit particles) was the same as for the etched (111)B substrate. SIMS measurements showed that some of the polishing grit particles ended up on the top surface after surface preparation. Hydrofluoric acid can be used to etch away the silica particles.

Keywords

CdZnTe substrate HgCdTe Te precipitates defects polishing impurity contamination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    E. Selvig, C.R. Tonheim, K.O. Kongshaug, T. Skauli, T. Lorentzen, and R. Haakenaasen, J. Vac. Sci. Technol. B 25, 1776 (2007).CrossRefGoogle Scholar
  2. 2.
    E. Selvig, C.R. Tonheim, K.O. Kongshaug, T. Skauli, H. Hemmen, T. Lorentzen, and R. Haakenaasen, J. Vac. Sci. Technol. B 26, 525 (2008).CrossRefGoogle Scholar
  3. 3.
    E. Selvig, C.R. Tonheim, T. Lorentzen, K.O. Kongshaug, T. Skauli, and R. Haakenaasen, J. Electron. Mater. 37, 1444 (2008).CrossRefGoogle Scholar
  4. 4.
    T. Colin and T. Skauli, J. Electron. Mater. 26, 688 (1997).CrossRefGoogle Scholar
  5. 5.
    T. Colin, D. Minsås, S. Gjøen, R. Sizman, and S. Løvold, Mater. Res. Soc. Symp. Proc. 340, 575 (1994).CrossRefGoogle Scholar
  6. 6.
    Y. Chang, C.R. Becker, C.H. Grein, J. Zhao, C. Fulk, T. Casselman, R. Kiran, X.J. Wang, E. Robinson, S.Y. An, S. Mallick, S. Sivananthan, T. Aoki, C.Z. Wang, D.J. Smith, S. Velicu, J. Zhao, J. Crocco, Y. Chen, G. Brill, P.S. Wijewarnasuriya, N. Dhar, R. Sporken, and V. Nathan, J. Electron. Mater. 37, 1171 (2008).CrossRefGoogle Scholar
  7. 7.
    J.D. Benson, L.O. Bubulac, P.J. Smith, R.N. Jacobs, J.K. Markunas, M. Jaime-Vasquez, L.A. Almeida, A. Stoltz, P.S. Wijewarnasuriya, G. Brill, Y. Chen, J. Peterson, M. Reddy, M.F. Vilela, S.M. Johnson, D.D. Lofgreen, A. Yulius, G. Bostrup, M. Carmody, D. Lee, and S. Couture, J. Electron. Mater. 43, 3993 (2014).CrossRefGoogle Scholar
  8. 8.
    J.D. Benson, L.O. Bubulac, M. Jaime-Vasquez, C.M. Lennon, P.J. Smith, R.N. Jacobs, J.K. Markunas, L.A. Almeida, A. Stoltz, J.M. Arias, P.S. Wijewarnasuriya, J. Peterson, M. Reddy, M.F. Vilela, S.M. Johnson, D.D. Lofgreen, A. Yulius, M. Carmody, R. Hirsch, J. Fiala, and S. Motakef, J. Electron. Mater. 44, 3082 (2015).CrossRefGoogle Scholar
  9. 9.
    J.D. Benson, L.O. Bubulac, M. Jaime-Vasquez, C.M. Lennon, J.M. Arias, P.J. Smith, R.N. Jacobs, J.K. Markunas, L.A. Almeida, A. Stoltz, P.S. Wijewarnasuriya, J. Peterson, M. Reddy, K. Jones, S.M. Johnson, and D.D. Lofgreen, J. Electron. Mater. 45, 4052 (2016).CrossRefGoogle Scholar
  10. 10.
    J.D. Benson, L.O. Bubulac, M. Jaime-Vasquez, J.M. Arias, P.J. Smith, R.N. Jacobs, J.K. Markunas, L.A. Almeida, A. Stoltz, P.S. Wijewarnasuriya, J. Peterson, M. Reddy, K. Jones, S.M. Johnson, and D.D. Lofgreen, J. Electron. Mater. 46, 5418 (2017).CrossRefGoogle Scholar
  11. 11.
    A. Noda, H. Kurita, and R. Hirano, Mercury Cadmium Telluride: Growth, Properties and Applications, ed. P. Capper and J. Garland (Hoboken: Wiley, 2010), p. 21.CrossRefGoogle Scholar
  12. 12.
    R.D.S. Yadava, B.S. Sundersheshu, M. Anandan, R.K. Bagai, and W.N. Borle, J. Electron. Mater. 23, 1349 (1994).CrossRefGoogle Scholar
  13. 13.
    S. Sen, D.R. Rhiger, C.R. Curtis, M.H. Kalisher, H.L. Hettich, and M.C. Currie, J. Electron. Mater. 30, 611 (2001).CrossRefGoogle Scholar
  14. 14.
    H. Bensalah, J. Crocco, V. Carcelén, A. Black, Q. Zheng, J.L. Plaza, and E. Diéguez, J. Cryst. Growth 361, 5 (2012).CrossRefGoogle Scholar
  15. 15.
    L. Yujie, G. Zhi, L. Guoqiang, and J. Wangqi, J. Electron. Mater. 33, 861 (2004).CrossRefGoogle Scholar
  16. 16.
    E. Belas, M. Bugár, R. Grill, J. Franc, P. Moravec, P. Hlídec, and P. Höschl, J. Electron. Mater. 37, 1212 (2008).CrossRefGoogle Scholar
  17. 17.
    E. Selvig, K.O. Kongshaug, R. Haakenaasen, T. Lorentzen, and T. Brudevoll, J. Electron. Mater. https://doi.org/10.1007/s11664-019-07339-8.

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.FFI – Norwegian Defence Research EstablishmentKjellerNorway
  2. 2.University Graduate Center at Kjeller (UNIK)KjellerNorway
  3. 3.Department of PhysicsNorwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations