Stress-Induced Variability Studies in Tri-Gate FinFETs with Source/Drain Stressor at 7 nm Technology Nodes

  • T. P. DashEmail author
  • J. Jena
  • E. Mohapatra
  • S. Dey
  • S. Das
  • C. K. Maiti


The epitaxially grown SiGe source/drain stressor (e-SiGe) technique has emerged to be a consistent performance booster for advanced devices below the 14 nm technology node. At nanoscale, the omnipresent residual stress is now becoming an important source of variability in advanced VLSI technologies that influence the circuit performance. Also, in deeply-scaled technologies, process and environment variations become other sources of variabilities. In this paper, we study the stress-induced variability in aggressively scaled (at 7 N) Si-channel FinFETs with epitaxially grown SiGe stressors in the source and drain regions. The stress distribution analysis is performed with the help of Technology CAD mechanical stress simulations. At first, we calibrate our simulation results with available experimental data. We generate the stress maps in FinFETs with various scaled dimensions of fin length, height and width. The effects of residual strain/stress on variability due to metal gate granularity (MGG) and random discrete dopant (RDD) in strain-engineered FinFETs (with 50 configurations) have been investigated. Furthermore, the device threshold voltage variation due to RDD and MGG are critically examined. Finally, we calculate the mean and standard deviation of these parameters (QQ plots) to quantify the variability.


Fin height gate length fin width mechanical stress density gradient model quantum correction metal gate granularity (MGG) random discrete dopant (RDD) threshold voltage epitaxially grown SiGe (e-SiGe) source/drain stressor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    IRDS: Executive Summary, International Roadmap for Devices and Systems (2017)Google Scholar
  2. 2.
    P.A. Gargini, Comput. Sci. Eng. 19, 51 (2017).CrossRefGoogle Scholar
  3. 3.
    S. Anand and R.K. Sarin, J. Electron. Mater. 47, 2988 (2018).CrossRefGoogle Scholar
  4. 4.
    S. Anand and R.K. Sarin, Superlattices Microstruct. 97, 60 (2016).CrossRefGoogle Scholar
  5. 5.
    S. Barraud, V. Lapras, M.P. Samson, L. Gaben, L. Grenouillet, V. Maffini-Alvaro, Y. Morand, J. Daranlot, N. Rambal, B. Previtalli, S. Reboh, C. Tabone, R. Coquand, E. Augendre, O. Rozeau, J.M. Hartmann, C. Vizioz, C. Arvet, P. Pimenta-Barros, N. Posseme, V. Loup, C. Comboroure, C. Euvrard, V. Balan, I. Tinti, G. Audoit, N. Bernier, D. Cooper, Z. Saghi, F. Allain, A. Toffoli, O. Faynot, and M. Vinet, in Int El Devices Meet (2016), pp. 17.6.1–17.6.4Google Scholar
  6. 6.
    H.H. Radamson, Y. Zhang, X. He, H. Cui, J. Li, J. Xiang, J. Liu, S. Gu, and G. Wang, Appl. Sci. 7, 1047 (2017).CrossRefGoogle Scholar
  7. 7.
    S. Gupta, V. Moroz, L. Smith, Q. Lu, and K.C. Saraswat, in Int El Devices Meet (2013), pp. 26.3.1–26.3.4Google Scholar
  8. 8.
    G. Eneman, A. De Keersgieter, A. Mocuta, N. Collaert, and A. Thean, in IC Design & Technology Conference Proceeding (2015), pp. 1–4Google Scholar
  9. 9.
    A. Erlebach, K.H. Lee, and F.M. Bufler, in ESSDERC Conference Proceeding (2016) pp. 420–423Google Scholar
  10. 10.
    Z. Stanojevic, O. Baumgartner, L. Filipovic, H. Kosina, M. Karner, C. Kernstock, P. Prause, in Int El Devices Meet (2015), pp. 5.1.1–5.1.4Google Scholar
  11. 11.
    Z. Stanojevic, O. Baumgartner, M. Karner, C. Kernstock, H.W. Karner, H. Demel, G. Strof, and F. Mitterbauer, in Int Conf Sim Semi Pr (2017), pp. 245–247Google Scholar
  12. 12.
    J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).CrossRefGoogle Scholar
  13. 13.
    I. Goroff and L. Kleinman, Phys. Rev. 132, 1080 (1963).CrossRefGoogle Scholar
  14. 14.
    N.A.F. Othman, S.F.W.M. Hatta, and N. Soin, in IEEE Int. Symp. Phys. (2016), pp. 267–271Google Scholar
  15. 15.
    N. Xu, B. Ho, M. Choi, V. Moroz, and T.-J. King Liu, IEEE Trans. Electron. Dev. 59, 1592 (2012).CrossRefGoogle Scholar
  16. 16.
    MINIMOS-NT User’s manual, (2018)Google Scholar
  17. 17.
    D.I. Bae, G. Bae, K.K. Bhuwalka, S.-H. Lee, M.-G. Song, T.-S. Jeon, C. Kim, W. Kim, J. Park, S. Kim, U. Kwon, J. Jeon, K-J. Nam, S. Lee, S. Lian, K.-I. Seo, S.-G. Lee, J.H. Park, Y.-C. Heo, M.S. Rodder, J.A. Kittl, Y. Kim, K.H. Wang, D.-W. Kim, M-S. Liang, E.S. Jung, in Int. El Dev. Meet. (2016), pp. 28.1.1–28.1.4Google Scholar
  18. 18.
    M. Choi, V. Moroz, L. Smith, and J. Huang, in Int. Conf. Sim. Semi Pr. (2015), pp. 242–245Google Scholar
  19. 19.
    G. Indalecio, M. Aldegunde, N. Seoane, K. Kalna, and A.J. García-Loureiro, Semicond. Sci. Tech. 29, 045005 (2014).CrossRefGoogle Scholar
  20. 20.
    G. Indalecio, A.J. Garcia-Loureiro, N. Seoane, and K. Kalna, IEEE Trans. Electron. Dev. 63, 2625 (2016).CrossRefGoogle Scholar
  21. 21.
    N. Seoane, G.A. Indalecio, M. Aldegunde, D. Nagy, M.A. Elmessary, A.J. Garcia-Loureiro, and K. Kalna, IEEE. Trans. Electron. Dev. 63, 1209 (2016).CrossRefGoogle Scholar
  22. 22.
    C. Auth, C. Allen, A. Blattner, D. Bergstrom, M. Brazier, M. Bost, M. Buehler, V. Chikarmane, T. Ghani, T. Glassman, R. Grover, W. Han, D. Hanken, M. Hattendorf, P. Hentges, R. Heussner, J. Hicks, D. Ingerly, P. Jain, S. Jaloviar, R. James, D. Jones, J. Jopling, S. Joshi, C. Kenyon, H. Liu, R. McFadden, B. McIntyre, J. Neirynck, C. Parker, L. Pipes, I. Post, S. Pradhan, M. Prince, S. Ramey, T. Reynolds, J. Roesler, J. Sandford, J. Seiple, P. Smith, C. Thomas, D. Towner, T. Troeger, C. Weber, P. Yashar, K. Zawadzki, and K. Mistry, in Int Sym. Vlsi. Tech. Sy. (2012), pp. 131–132Google Scholar
  23. 23.
    A. Gendron-Hansen, K. Korablev, I. Chakarov, J. Egley, J. Cho, and F. Benistant, in Int. Conf. Sim. Semi. Pr. (2015), pp. 417–420Google Scholar
  24. 24.
    C.G. Van de Walle and R.M. Martin, Phys. Rev. B 34, 5621 (1986).CrossRefGoogle Scholar
  25. 25.
    W.A. Brantley, J. Appl. Phys. 44, 534 (1973).CrossRefGoogle Scholar
  26. 26.
    N.A.F. Othman, F.W.M. Hatta, and N. Soin, J. Elec. Mater. 47, 2337 (2018).CrossRefGoogle Scholar
  27. 27.
    T.-Y. Liow, K.-M. Tan, R.T.P. Lee, M. Zhu, B. L.-H. Tan, G.S. Samudra, N. Balasubramanian, and Y.-C. Yeo, in Int. Sym. Vlsi. Tech. Sy. (2008), pp. 36–37Google Scholar
  28. 28.
    D.I. Bae, G. Bae, K.K. Bhuwalka, S.H. Lee, M.G. Song, T.S. Jeon, C. Kim, W. Kim, J. Park, S. Kim, U. Kwon, J. Jeon, K.J. Nam, S. Lee, S. Lian, K.I. Seo, S.G. Lee, J.H. Park, Y.C. Heo, M.S. Rodder, J.A. Kittl, Y. Kim, K. Hwang, D.W. Kim, M.S. Liang, and E.S. Jung, in Int. El Dev. Meet. (2016), pp. 28.1.1–28.1.4Google Scholar
  29. 29.
    A. Erlebach, K.H. Lee, and F.M. Bufler, in Proc. Eur. S-State Dev. (2016), pp. 420–423.Google Scholar
  30. 30.
    J.J. Wortman, J.R. Hauser, and R.M. Burger, J. Appl. Phys. 35, 2122 (1964).CrossRefGoogle Scholar
  31. 31.
    M. Lades, J. Frank, J. Funk, and G. Wachutka, in SISDEP Conference Proceedings (1995), pp. 22–25.Google Scholar
  32. 32.
    M. Cassé, S. Barraud, C. Le Royer, M. Koyama, R. Coquand, D. Blachier, F. Andrieu, G. Ghibaudo, O. Faynot, T. Poiroux, and G. Reimbold, in Int. El Dev. Meet. (2012), pp. 28.1.1–28.1.4Google Scholar
  33. 33.
    K. Matsuda, K. Suzuki, K. Yamamura, and Y. Kanda, J. Appl. Phys. 73, 1838 (1993).CrossRefGoogle Scholar
  34. 34.
    Y. Kanda, Sens. Actuators, A 28, 83 (1991).CrossRefGoogle Scholar
  35. 35.
    G.L. Bir and G.E. Pikus, (John Wiley & Sons, New York, 1974)Google Scholar
  36. 36.
    T. Manku and A. Nathan, J. Appl. Phys. 73, 1205 (1993).CrossRefGoogle Scholar
  37. 37.
    Y. Kanda, IEEE Trans. Electron. Dev. 29, 64 (1982).CrossRefGoogle Scholar
  38. 38.
    D. James, Intel announces tweaks to 22FFL process for RF, MRAM at IEDM18 (Semiconductor Manufacturing and Design Community, Chipworks, 2019) Accessed 30 May 2019
  39. 39.
    VSP User’s manual, (2018)Google Scholar
  40. 40.
    Z. Stanojevi´c, M. Karner, O. Baumgartner, H.W. Karner, C. Kernstock, H. Demel, and F. Mitterbauer, in Int. Conf. Sim. Semi Pr. (2016), pp. 65–67Google Scholar
  41. 41.
    M. Karner, O. Baumgartner, Z. Stanojevi´c, F. Schanovsky, G. Strof, C. Kernstock, H.W. Karner, G. Rzepa, and T. Grasser, in Int. El Dev. Meet. (2016), pp. 30.7.1–30.7.4Google Scholar
  42. 42.
    T. Rudenko, V. Kilchytska, N. Collaert, M. Jurczak, A. Nazarov and D. Flandre, in IEEE Trans. Electron. Dev. 55, 3532 (2008)Google Scholar
  43. 43.
    S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press, 1997).Google Scholar
  44. 44.
    R. Venugopal, M. Paulsson, S. Goasguen, S. Datta, and M.S. Lundstrom, J. Appl. Phys. 93, 5613 (2003).CrossRefGoogle Scholar
  45. 45.
    N. Seoane and A. Martinez, J. Appl. Phys. 114, 104307 (2013).CrossRefGoogle Scholar
  46. 46.
    R. Valin, M. Aldegunde, A. Martinez, and J.R. Barker, J. Appl. Phys. 116, 084507 (2014).CrossRefGoogle Scholar
  47. 47.
    A. Martinez, J.R. Barker, M. Aldegunde and R. Valin, in IEEE Electr. Dev. L. 36, 2 (2015)Google Scholar
  48. 48.
    K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, C.-H. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks, R. Huessner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz, B. Mclntyre, P. Moon, J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vandervoorn, S. Williams, and K. Zawadzki, in Int El Devices Meet (2007), pp. 247–250.Google Scholar
  49. 49.
    K. Ohmori, T. Matsuki, D. Ishikawa, T. Morooka, T. Aminaka, Y. Sugita,T. Chikyow, K. Shiraishi, Y. Nara, and K. Yamada, in Int. El Dev. Meet. (2008), pp. 409–412Google Scholar
  50. 50.
    H. Dadgour, D. Vivek, and K. Banerjee, in IEEE IC CAD (2008) pp. 270–277Google Scholar
  51. 51.
    Y. Taur and T.H. Ning, Fundamentals of Modern VLSI Devices, 2nd ed. (New York: Cambridge University Press, 1998).Google Scholar
  52. 52.
    T. Mizuno, J. Okumtura, and A. Toriumi, IEEE Trans. Electron. Dev. 41, 2216 (1994).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringSiksha ‘O’ Anusandhan (Deemed to be University)BhubaneswarIndia

Personalised recommendations