Advertisement

Synthesis of GO Loaded TiO2 Nanotubes Array by Anodic Oxidation for Efficient Detection of Organic Vapor

  • Teena Gakhar
  • Arnab HazraEmail author
Article
  • 5 Downloads

Abstract

The present study concerns the synthesis of highly ordered graphene oxide (GO) loaded TiO2 nanotubes array by the electrochemical anodization route. Structural and morphological characterizations of pure and GO loaded TiO2 nanotubes array were carried out by x-ray diffraction spectroscopy, energy dispersive spectroscopy and field emission scanning electron microscopy study. Optical characterizations were performed with Raman spectroscopy and photoluminescence study to explore the composition of both the TiO2 nanotubes array. A conductometric solid state vapor sensing device having sandwich-type structure (Au/TiO2 nanotubes/Ti) was fabricated by using both the pure and GO-loaded TiO2 nanotube array and tested towards reducing vapor like methanol. The response was double in case of GO loaded TiO2 nanotube array (40%) as compared to pure TiO2 nanotube array (20%) based sensor at room temperature (300 K). The overall study confirmed that electrical properties of the TiO2 nanotubes array were improved due to the GO incorporation while morphological parameters were intact.

Keywords

TiO2 nanotubes array graphene oxide electrochemical anodization vapor detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported in part by Science and Engineering Research Board grant (Lett. No. ECR/2015/000345), Department of Biotechnology grant (Letter No. BT/PR28727/NNT/28/1569/2018) and SPARC grant (SPARC/2018-2019/P1394/SL), govt. of India.

References

  1. 1.
    K. Narimani, F.D. Nayeri, M. Kolahdouz, and P. Ebrahimi, Sens. Actuators B Chem. 224, 338 (2016).CrossRefGoogle Scholar
  2. 2.
    X. Song, Q. Qi, T. Zhang, and C. Wang, Sens. Actuators B Chem. 138, 368 (2009).CrossRefGoogle Scholar
  3. 3.
    Q. Huang, S. Tian, D. Zeng, X. Wang, W. Song, Y. Li, W. Xiao, and C. Xie, ACS Catal. 3, 1477 (2013).CrossRefGoogle Scholar
  4. 4.
    J.N. Aman, J.K. Wied, Q. Alhusaini, S. Müller, K. Diehl, T. Staedler, H. Schönherr, X. Jiang, and J. Schmedt auf der Günne, ACS Appl Nano Mater. 2, 1986 (2019).CrossRefGoogle Scholar
  5. 5.
    N. Kılınç, E. Şennik, and Z.Z. Öztürk, Thin Solid Films 520, 953 (2011).CrossRefGoogle Scholar
  6. 6.
    Y. Gönüllü, A.A. Haidry, and B. Saruhan, Sens. Actuators B. 217, 78 (2015).CrossRefGoogle Scholar
  7. 7.
    X. Li, G. Chen, L. Yang, Z. Jin, and J. Liu, Adv. Func. Mater. 20, 2815 (2010).CrossRefGoogle Scholar
  8. 8.
    C.A. Grimes and G.K. Mor, TiO 2 Nanotube Arrays: Application to Hydrogen Sensing (Boston: Springer, 2009), p. 115.CrossRefGoogle Scholar
  9. 9.
    Z. Song, H. Zhou, P. Tao, B. Wang, J. Mei, H. Wang, S. Wen, Z. Song, and G. Fang, Mater. Lett. 180, 179 (2016).CrossRefGoogle Scholar
  10. 10.
    Z. Ye, H. Tai, T. Xie, Y. Su, Z. Yuan, C. Liu, and Y. Jiang, Mater. Lett. 165, 127 (2016).CrossRefGoogle Scholar
  11. 11.
    A. Hazra, B. Bhowmik, K. Dutta, P.P. Chattopadhyay, and P. Bhattacharyya, ACS Appl. Mater. Interfaces 7, 9336 (2015).CrossRefGoogle Scholar
  12. 12.
    A. Hazra, K. Dutta, B. Bhowmik, P.P. Chattopadhyay, and P. Bhattacharyya, Appl. Phys. Lett. 105, 081604 (2014).CrossRefGoogle Scholar
  13. 13.
    H.-J. Kim and J.-H. Lee, Sens. Actuators B 192, 607 (2014).CrossRefGoogle Scholar
  14. 14.
    X. Li, X. Li, N. Chen, X. Li, J. Zhang, J. Yu, J. Wang, and Z. Tang, J. Nanomater. 973156, 1 (2014).Google Scholar
  15. 15.
    Y. Ushio, M. Miyayama, and H. Yanagida, Sens. Actuators B 12, 135 (1993).CrossRefGoogle Scholar
  16. 16.
    U.-S. Choi, G. Sakai, K. Shimanoe, and N. Yamazoe, Sens. Actuators B 98, 166 (2004).CrossRefGoogle Scholar
  17. 17.
    S.K. Hazra and S. Basu, Solid-State Electr. 49, 1158 (2005).CrossRefGoogle Scholar
  18. 18.
    V.K. Tomer and S. Duhan, J. Mater. Chem. A. 4, 1033 (2016).CrossRefGoogle Scholar
  19. 19.
    A. Hazra, P.P. Chattopadhyay, and P. Bhattacharyya, IEEE Electron Dev. Lett. 36, 505 (2015).CrossRefGoogle Scholar
  20. 20.
    A. Hazra and P. Bhattacharyya, IEEE Trans. Electron Dev. 62, 1984 (2015).CrossRefGoogle Scholar
  21. 21.
    Z. Ye, H. Tai, T. Xie, Z. Yuan, C. Liu, and Y. Jiang, Sens. Actuators B 223, 149 (2016).CrossRefGoogle Scholar
  22. 22.
    Y. Zhang, Z.-R. Tang, X. Fu, and Y.-J. Xu, ACS Nano 4, 7303 (2010).CrossRefGoogle Scholar
  23. 23.
    E. Lee, D. Lee, J. Yoon, Y. Yin, Y.N. Lee, S. Uprety, Y.S. Yoon, and D.-J. Kim, Sensors 3334, 1 (2018).Google Scholar
  24. 24.
    S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, and K.J. Jr, Balkus. ACS Catal. 2, 949 (2012).CrossRefGoogle Scholar
  25. 25.
    J. Liu, S. Li, B. Zhang, Y. Xiao, Y. Gao, Q. Yang, Y. Wang, and G. Lu, Sens. Actuators B 249, 715 (2017).CrossRefGoogle Scholar
  26. 26.
    Y. Xiao, Q. Yang, Z. Wang, R. Zhang, Y. Gao, P. Sun, Y. Sun, and G. Lu, Sens. Actuators B 227, 419 (2016).CrossRefGoogle Scholar
  27. 27.
    G. Lu, L.E. Ocola, and J. Chen, Nanotechnology 20, 445502 (2009).CrossRefGoogle Scholar
  28. 28.
    Z. Abideen, A. Katoch, J. Kim, Y. Kwon, H. Kim, and S. Kim, Sens. Actuators B 221, 1499 (2015).CrossRefGoogle Scholar
  29. 29.
    P. Wang, Y. Zhai, D. Wang, and S. Dong, Nanoscale 3, 1640 (2011).CrossRefGoogle Scholar
  30. 30.
    I. Ali, S.R. Kim, K. Park, and J.O. Kim, Opt. Mater. Exp. 7, 1535 (2017).CrossRefGoogle Scholar
  31. 31.
    Xuerong Chen, Dan Liu, Guojun Cao, Yong Tang, and Wu Can, ACS Appl. Mater. Interfaces 11, 9374 (2019).CrossRefGoogle Scholar
  32. 32.
    C.E.E. Rao, A.E. Sood, K.E. Subrahmanyam, and A. Govindaraj, Angew. Chem. Int. Ed. 48, 7752 (2009).CrossRefGoogle Scholar
  33. 33.
    C.N.R. Rao, A.K. Sood, R. Voggu, and K.S. Subrahmanyam, J. Phys. Chem. Lett. 1, 572 (2010).CrossRefGoogle Scholar
  34. 34.
    S.G. Chatterjee, S. Chatterjee, A.K. Ray, and A.K. Chakraborty, Sens. Actuators B 221, 1170 (2015).CrossRefGoogle Scholar
  35. 35.
    W. Fan, Q. Lai, Q. Zhang, and Y. Wang, J. Phys. Chem. C 115, 10694 (2011).CrossRefGoogle Scholar
  36. 36.
    L. Guo, X. Kou, M. Ding, C. Wang, L. Dong, H. Zhang, C. Feng, Y. Sun, Y. Gao, P. Sun, and G. Lu, Sens. Actuators B 244, 233 (2017).CrossRefGoogle Scholar
  37. 37.
    H. Rajput, V.K. Sangal, and A. Dhir, J. Electroanal. Chem. 814, 118 (2018).CrossRefGoogle Scholar
  38. 38.
    P. Bindra and A. Hazra, IEEE Trans. Nanotechnol. 18, 13 (2019).CrossRefGoogle Scholar
  39. 39.
    P. Bindra, S. Gangopadhyay, and A. Hazra, IEEE Trans. Electron Dev. 65, 1918 (2018).CrossRefGoogle Scholar
  40. 40.
    Z. Luo, P.M. Vora, E.J. Mele, A.C. Johnson, and J.M. Kikkawa, Appl. Phys. Lett. 94, 111909 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Deptartment of Electrical and Electronics EngineeringBirla Institute of Technology and Science (BITS)-PilaniVidya ViharIndia

Personalised recommendations