Advertisement

High Permittivity, Low Dielectric Loss and Impedance Characteristics of Li0.5La0.5Cu3Ti4O12 Ceramics by a Sol–Gel Technique

  • Zhanqing LiuEmail author
  • Zupei Yang
Article
  • 1 Downloads

Abstract

Li-doped La2/3Cu3Ti4O12 ceramics and the Li0.5La0.5Cu3Ti4O12 ceramic samples were prepared by the sol–gel technique. The influence of sintering conditions on structures and dielectric properties of Li0.5La0.5Cu3Ti4O12 ceramic samples were systematically researched. The results indicated that the Li0.5La0.5Cu3Ti4O12 ceramic samples sintered at 1070°C for 10 h exhibited low porosity structure, larger grain sizes (ca 8 μm and 4 μm) with bimodal distribution, higher permittivity (ca 0.70–1.0 × 104), especially lower dielectric loss (ca 0.030) and better stability of frequency and temperature. The internal barrier layer capacitor effect could well explain the giant permittivity phenomenon of the Li0.5La0.5Cu3Ti4O12 ceramics. Additionally, the grain boundary conduction of the Li0.5La0.5Cu3Ti4O12 ceramic samples displayed two different characteristics, thus two kinds of conductivity activation energy values were obtained in the grain boundary. Simultaneously, it was found that the temperature among 190–230°C seemed to be an important temperature region. The permittivity, dielectric loss and conductivity characteristics in the critical temperature region of 190–230°C showed abnormal change. It was concluded that in the critical temperature region, the oxygen vacancy forms, concentration and extra electrons concentration might vary significantly. The second-ionized oxygen vacancies (\( V_{\rm{O}}^{ \cdot \cdot } \)) might play a dominating role below about 190°C for the electrical properties of ceramic samples, while the first-ionized oxygen vacancies (\( V_{\rm{O}}^{ \cdot } \)) might be principal above about 230°C.

Keywords

Li0.5La0.5Cu3Ti4O12 ceramics giant dielectric properties low dielectric loss complex impedance activation energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Science Foundation of China (No. 51172136), the Science Foundation of Shaanxi Province (No. 2017JM2037), the Scientific Research Funds of Shaanxi Provincial Education Department (17JK0277) and the Scientific Research Funds of Weinan Normal University (Nos. 18ZRRC16, 2018JYKX013).

References

  1. 1.
    X.J. Cheng, Z.W. Li, and J.G. Wu, J. Mater. Chem. A 3, 5805 (2015).CrossRefGoogle Scholar
  2. 2.
    Z.W. Li, J.G. Wu, D.Q. Xiao, and J.G. Zhu, Acta Mater. 103, 243 (2016).CrossRefGoogle Scholar
  3. 3.
    Z.W. Li, X. Luo, W.J. Wu, and J.G. Wu, J. Am. Ceram. Soc. 100, 3004 (2017).CrossRefGoogle Scholar
  4. 4.
    C.L. Zhao and J.G. Wu, ACS Appl. Mater. Interfaces 10, 3680 (2018).CrossRefGoogle Scholar
  5. 5.
    X.H. Zhu, L.H. Yang, J.L. Li, L. Jin, and F. Li, Ceram. Int. 43, 640 (2017).Google Scholar
  6. 6.
    J.L. Li, F. Li, X.H. Zhu, D.B. Lin, and Z. Xu, J. Alloys Compd. 692, 375 (2017).CrossRefGoogle Scholar
  7. 7.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, and A.W. Sleight, J. Solid State Chem. 151, 323 (2000).CrossRefGoogle Scholar
  8. 8.
    P.B. Shri and K.B.R. Varma, Phys. B 403, 2246 (2008).CrossRefGoogle Scholar
  9. 9.
    Y.Q. Tana, J.L. Zhanga, W.T. Haoa, and G. Chena, Mater. Chem. Phys. 124, 1100 (2010).CrossRefGoogle Scholar
  10. 10.
    P.F. Liang, Z.P. Yang, X.L. Chao, and Z.H. Liu, J. Am. Ceram. Soc. 95, 2218 (2012).CrossRefGoogle Scholar
  11. 11.
    H.M. Ren, P.F. Liang, and Z.P. Yang, Mater. Res. Bull. 45, 1608 (2010).CrossRefGoogle Scholar
  12. 12.
    P. Thongbai, T. Yamwong, and S. Maensiri, Mater. Res. Bull. 47, 432 (2012).CrossRefGoogle Scholar
  13. 13.
    X. Wang, P.F. Liang, Z.H. Peng, H. Peng, and Z.P. Yang, J. Alloys Compd. 778, 391 (2019).CrossRefGoogle Scholar
  14. 14.
    Z.Q. Liu and Z.P. Yang, J. Mater. Sci. Mater. Electron. 46, 6175 (2017).CrossRefGoogle Scholar
  15. 15.
    L.H. Yang, X.L. Chao, Z. Yang, N. Zhao, L.L. Wei, and Z.P. Yang, Ceram. Int. 42, 2526 (2016).CrossRefGoogle Scholar
  16. 16.
    J.J. Liu, R.W. Smith, and W.N. Mei, Chem. Mater. 19, 6020 (2007).CrossRefGoogle Scholar
  17. 17.
    D.L. Sun, A.Y. Wu, and S.T. Yiny, J. Am. Ceram. Soc. 91, 169 (2008).CrossRefGoogle Scholar
  18. 18.
    Z.Q. Liu, X.L. Chao, and Z.P. Yang, J. Mater. Sci. Mater. Electron. 27, 8980 (2014).CrossRefGoogle Scholar
  19. 19.
    Z.Q. Liu, X.L. Chao, and Z.P. Yang, J. Am. Ceram. Soc. 97, 2154 (2014).CrossRefGoogle Scholar
  20. 20.
    B. Xu, J. Zhang, and Z.M. Tian, Mater. Lett. 75, 87 (2012).CrossRefGoogle Scholar
  21. 21.
    B.A. Bender and M.J. Pan, Mater. Sci. Eng. B 117, 339 (2005).CrossRefGoogle Scholar
  22. 22.
    P. Zheng, J.L. Zhang, S.F. Shao, Y.Q. Tan, and C.L. Wang, Appl. Phys. Lett. 94, 032902 (2009).CrossRefGoogle Scholar
  23. 23.
    Q.L. Zhang, T. Li, Z.P. Chen, R.Z. Xue, and Y.Q. Wang, Mater. Sci. Eng. B 177, 168 (2012).CrossRefGoogle Scholar
  24. 24.
    W.T. Hao, J.L. Zhang, Y.Q. Tan, and W.B. Su, J. Am. Ceram. Soc. 92, 2937 (2009).CrossRefGoogle Scholar
  25. 25.
    W.T. Hao, J.L. Zhang, Y.Q. Tan, M.L. Zhao, and C.L. Wang, J. Am. Ceram. Soc. 94, 1067 (2011).CrossRefGoogle Scholar
  26. 26.
    S.M. Moussa and B.J. Kennedy, Mater. Res. Bull. 36, 2525 (2001).CrossRefGoogle Scholar
  27. 27.
    Y.H. Lin, J.N. Cai, M. Li, C.W. Nan, and J.L. He, J. Appl. Phys. 103, 074111 (2008).CrossRefGoogle Scholar
  28. 28.
    M.A. Siddiqui, V.S. Chandel, and A. Azam, Appl. Surf. Sci. 258, 7354 (2012).CrossRefGoogle Scholar
  29. 29.
    W.Z. Yang, C.L. Song, and X.Q. Liu, J. Electron. Mater. 43, 1645 (2014).CrossRefGoogle Scholar
  30. 30.
    H. Hong and D.Y. Kjm, J. Am. Ceram. Soc. 90, 2118 (2007).CrossRefGoogle Scholar
  31. 31.
    H.Y. Zhu and X.M. Chen, J. Mater. Sci. 46, 6339 (2011).CrossRefGoogle Scholar
  32. 32.
    L. Zhang and Z.J. Tang, Phys. Rev. B 70, 17436 (2004).Google Scholar
  33. 33.
    C.K. Suman, K. Prasad, and R.N.P. Choudhary, Mater. Chem. Phys. 97, 425 (2006).CrossRefGoogle Scholar
  34. 34.
    T.Y. Li, H.Q. Fan, C.B. Long, and G.Z. Dong, J. Alloys Compd. 609, 60 (2014).CrossRefGoogle Scholar
  35. 35.
    Z.Q. Liu, X.L. Chao, and Z.P. Yang, Mate. Res. Bull. 48, 4877 (2013).CrossRefGoogle Scholar
  36. 36.
    J.G. Wu and J. Wang, J. Am. Ceram. Soc. 93, 2795 (2010).CrossRefGoogle Scholar
  37. 37.
    P.F. Liang, X.L. Chao, F. Wang, Z.Q. Liu, and Z.P. Yang, J. Am. Ceram. Soc. 96, 3883 (2013).CrossRefGoogle Scholar
  38. 38.
    J.G. Wu, J. Wang, D.Q. Xiao, and J.G. Zhu, J. Appl. Phys. 110, 064104 (2011).CrossRefGoogle Scholar
  39. 39.
    J.Y. Li, X.T. Zhao, and F. Gu, Appl. Phys. Lett. 100, 202905 (2012).CrossRefGoogle Scholar
  40. 40.
    F. Moura, A.Z. Simoes, and R.C. Deus, Ceram. Int. 39, 3499 (2013).CrossRefGoogle Scholar
  41. 41.
    J.K. Gill, O.P. Pandey, and K. Singh, Solid State Sci. 13, 1960 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Shaanxi Province Engineering Research Center of Coal Conversion Alcohol, College of Chemistry and MaterialsWeinan Normal UniversityWeinanPeople’s Republic of China
  2. 2.Key Laboratory of Macromolecular Science of Shaanxi Province, School of Materials Science and EngineeringShaanxi Normal UniversityXi’anPeople’s Republic of China

Personalised recommendations