Advertisement

Reststrahlen Band Studies of RuCrX (X = Si, Ge, Sn) Half Heusler Alloys

  • A. AfaqEmail author
  • Hassan Maaz
  • Abu Bakar
  • M. Imran Jamil
Article
  • 17 Downloads

Abstract

Reststrahlen band measurements in RuCrX (X = Si, Ge, Sn) Half Heusler Alloys (HHAs) for Far Infrared (FIR) spectroscopy are pointed out in this article by using Density Functional Theory (DFT). Generalized Gradient Approximation (GGA) as an exchange–correlation functional in the WIEN2k-package is used for structural optimization while Martin Troullier norm-conserving pseudo-potentials in Quantum ESPRESSO (QE) are used for structural optimization and lattice dynamic study of the alloys. Phonon dispersion curves elucidate dynamical stability and reststrahlen bands of the alloys. It is found that all alloys are dynamically stable in C1b structure and reststrahlen bands for RuCrX (X = Si, Ge, Sn) are 2.92 THz (Δλ = 102.62 μm), 0.96 THz (Δλ = 311.18 μm) and 0.81 THz (Δλ = 366.98 μm) respectively. This predicts RuCrSi HHA has a larger reststrahlen band that corresponds to being more polar in nature than other alloys. The calculated reststrahlen values for all alloys are in the FIR spectral region, so they can be used to manufacture the FIR-devices.

Keywords

DFT calculations vibrational properties phonon dispersion Relations reststrahlen band heusler alloys 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    K. Manna, Y. Sun, L. Muechler, J. Kübler, and C. Felser, Nat. Rev. Mater. 3, 244 (2018).CrossRefGoogle Scholar
  2. 2.
    T. Graff, S.S.P. Parkin, and C. Felser, IEEE Trans. Magn. 47, 367 (2011).CrossRefGoogle Scholar
  3. 3.
    F. Casper, T. Graf, S. Chadov, B. Balke, and C. Felser, Semicond. Sci. Technol. 27, 063001 (2012).CrossRefGoogle Scholar
  4. 4.
    M. Fox, Optical Properties of Solids, 1st ed., vol. 204 (Oxford: Oxford University Press, 2001).Google Scholar
  5. 5.
    C.G. Ribbing and E. Wäckelgård, Thin Solid Films 206, 312 (1991).CrossRefGoogle Scholar
  6. 6.
    J.W. Salisbury and D.M. D’Aria, Remote Sens. Environ. 42, 157 (1992).CrossRefGoogle Scholar
  7. 7.
    R.K. Vincent and F. Thomson, J. Geophys. Res. 77, 2465 (1972).CrossRefGoogle Scholar
  8. 8.
    A. Goldberg, P.N. Uppal, and M. Winn, Infrared Phys. Technol. 44, 427 (2003).CrossRefGoogle Scholar
  9. 9.
    A. Mitsuishi, Y. Yamada, and H. Yoshinaga, J. Opt. Soc. Am. 52, 14 (1962).CrossRefGoogle Scholar
  10. 10.
    E.T. Lynk and L.B. Major, Rev. Sci. Instrum. 45, 132 (1974).CrossRefGoogle Scholar
  11. 11.
    T. Chibuye, C.G. Ribbing, and E. Wäckelgård, Appl. Opt. 33, 5975 (1994).CrossRefGoogle Scholar
  12. 12.
    Y. Moğulkoç and Y. Öztekin Çiftçi, Cumhuriyet Sci. 38(2), 312 (2017).Google Scholar
  13. 13.
    A. Erkisi and G. Surucu, Mater. Res. Express. 4, 066504 (2017).CrossRefGoogle Scholar
  14. 14.
    N.S. Chauhan, B. Gahtori, B. Sivaiah, S.D. Mahanti, A. Dhar, and A. Bhattacharya, Appl. Phys. Lett. 113, 013902 (2018).CrossRefGoogle Scholar
  15. 15.
    H.K. Ozisik, K. Colakoglu, and H.B. Ozisik, Fizika 16, 154 (2011).Google Scholar
  16. 16.
    D. Shrivastava and S.P. Sanyal, Solid State Commun. 273, 1 (2018).CrossRefGoogle Scholar
  17. 17.
    K. Kaur, R. Kumar, and D.P. Rai, J. Alloys Compd. 763, 1018 (2018).CrossRefGoogle Scholar
  18. 18.
    R.P. Shahri and A. Akhtar, Chin. Phys. B 26, 093107 (2017).CrossRefGoogle Scholar
  19. 19.
    S. Krishnaveni and M. Sundareswari, Int. J. Energy Res. 42, 764 (2017).CrossRefGoogle Scholar
  20. 20.
    M. Rizwan, A. Afaq, and A. Aneeza, Phys. B 537, 225 (2018).CrossRefGoogle Scholar
  21. 21.
    J. Ma, V.I. Hegde, K. Munira, Y. Xie, S. Keshavarz, D.T. Mildebrath, C. Wolverton, A.W. Ghosh, and W.H. Butler, Phys. Rev. B. 95, 024411 (2017).CrossRefGoogle Scholar
  22. 22.
    G. Schreckenbach, P.J. Hay, and R.L. Martin, J. Comput. Chem. 20, 90 (1999).CrossRefGoogle Scholar
  23. 23.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  24. 24.
    S. Baroni, Rev. Mod. Phys. 73, 515 (2001).CrossRefGoogle Scholar
  25. 25.
    K. Parlinski, Z. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997).CrossRefGoogle Scholar
  26. 26.
    A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008).CrossRefGoogle Scholar
  27. 27.
    X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).CrossRefGoogle Scholar
  28. 28.
    P. Giannozzi, J. Phys. Condens. Matter 21, 395502 (2009).CrossRefGoogle Scholar
  29. 29.
    N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993 (1991).CrossRefGoogle Scholar
  30. 30.
    H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 518 (1976).CrossRefGoogle Scholar
  31. 31.
    T. Graf, C. Felser, and S.S. Parkin, Prog. Solid State Chem. 39, 1 (2011).CrossRefGoogle Scholar
  32. 32.
    C. Kittel, Introduction to Solid State Physics, 8th ed. (New York: Willey, 2005).Google Scholar
  33. 33.
    A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015).CrossRefGoogle Scholar
  34. 34.
    R.H. Lyddane, R.G. Sachs, and E. Teller, Phys. Rev. 59, 673 (1941).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Centre of Excellence in Solid State PhysicsUniversity of the PunjabLahorePakistan
  2. 2.Department of PhysicsUniversity of Management and TechnologyLahorePakistan

Personalised recommendations