Experimental Study of Different Vanadium Dopant Concentrations in ZnO Nanorods for a Low Frequency Piezoelectric Accelerometer

  • Kiruthika RamanyEmail author
  • Radha Shankararajan
  • Kirubaveni Savarimuthu
  • Priyadharshini Elumalai
  • Govindaraj Rajamanickam
  • Santhosh Narendhiran
  • Ramasamy Perumalsamy


Nano-electro-mechanical systems accelerometers using undoped (Z) and 1 wt.%, 3 wt.% and 5 wt.% of Vanadium doped (ZV1, ZV3 and ZV5) Zinc Oxide (active layer) nanorods are fabricated. A low temperature assisted hydrothermal method was used to grow nanorods on Fluorine-doped Tin Oxide substrates. The complete accelerometer device architecture includes formation of a p-n junction by depositing poly (3,4-ethylene dioxythiophene) polystyrene sulfonate (p-type layer) on V doped and undoped active layers (n-type layer) with silver as top electrode. The structural analysis revealed the (002) plane c-axis orientation of 1 D nanorods grown. A field emission scanning electron microscope with energy dispersive x-ray spectroscopy showed changes in the morphology in the undoped and doped devices. Optical analysis showed a band gap decrease from 3.15 eV (Z) to 2.92 eV (ZV5). Photoconductivity study proved the formation of a p-n junction between the p-type and active layer in all the fabricated piezoelectric accelerometers. The Nyquist plots obtained using impedance analysis depicted the presence of RC circuit in all the fabricated accelerometers. A less internal resistance of 1.26 kΩ and RC time constant of 0.032 ms for ZV5 showed an improved piezoelectric property due to 5 wt.% of V doping compared to other fabricated accelerometers. The highest sensitivity of 3.528 V/g was acquired for ZV5 with maximum output voltages of 2.30 V and 2.9 V at 9 Hz resonant frequency and 1 g acceleration, respectively. An improvement of 77.28% sensitivity in ZV5 was observed compared to that of Z.


Accelerometer dopant vanadium zinc oxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Y. Itakura, N. Fujii, and T. Sawada, Phys. Chem. Earth B 25, 717 (2000).CrossRefGoogle Scholar
  2. 2.
    E.P. James, M.J. Tudor, S.P. Beeby, N.R. Harris, P. Glynne-Jones, J.N. Ross, and N.M. White, Sens. Actuators A 110, 171 (2004).CrossRefGoogle Scholar
  3. 3.
    K. Fischer and S.G. Mayr, Adv. Mater. 23, 3838 (2011).Google Scholar
  4. 4.
    A. Koka and H.A. Sodano, Nat. Commun. 4, 2682 (2013).CrossRefGoogle Scholar
  5. 5.
    K.S. Ramadan, D. Sameoto, and S. Evoy, Smart Mater. Struct. 23, 033001 (2014).CrossRefGoogle Scholar
  6. 6.
    K. Savarimuthu, R. Sankararajan, R. Govindaraj, and S. Narendhiran, Nanoscale 10, 16022 (2018).CrossRefGoogle Scholar
  7. 7.
    L. Guo, Y.L. Ji, H. Xu, P. Simon, and Z. Wu, J. Am. Chem. Soc. 2002, 124 (2002).Google Scholar
  8. 8.
    M. Willander, O. Nur, Q.X. Zhao, L.L. Yang, M. Lorenz, B.Q. Cao, J.Z. Perez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A.C. Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H.S. Kwack, J. Guinard, and D.L.S. Dang, Nanotechnology 20, 332001 (2009).CrossRefGoogle Scholar
  9. 9.
    K. Prashanthi, N. Miriyala, R.D. Gaikwad, W. Moussa, V. Ramgopal Raob, and T. Thundat, Nano Energy 2, 923 (2013).CrossRefGoogle Scholar
  10. 10.
    M.S. Mo, J.C. Yu, L.Z. Zhang, and S.A. Li, Adv. Mater. 17, 56 (2005).CrossRefGoogle Scholar
  11. 11.
    Z.W. Pan, Z.R. Dai, and Z.L. Wang, Science 291, 10 (2001).CrossRefGoogle Scholar
  12. 12.
    Z.L. Wang, Mater. Sci. Eng. R 64, 33 (2009).CrossRefGoogle Scholar
  13. 13.
    A. Khan, M.A. Abbasi, J. Wissting, O. Nur, and M. Willander, Phys. Status Solidi RRL 7, 980 (2013).CrossRefGoogle Scholar
  14. 14.
    W. Zhao, X. Song, Z. Yin, C. Fan, G. Chen, and S. Sun, Mater. Res. Bull. 43, 3171 (2008).CrossRefGoogle Scholar
  15. 15.
    E.S. Nour, C.O. Chey, M. Willander, and O. Nur, Phys. Status Solidi (a) 213, 2503 (2016).CrossRefGoogle Scholar
  16. 16.
    H.C. Kim, S. Song, and J. Kim, Sensors 16, 1499 (2016).CrossRefGoogle Scholar
  17. 17.
    Yoke-Rung Wong, Yanhui Yuan, Du Hejun, and Xin Xia, Sens. Actuators A 229, 23 (2015).CrossRefGoogle Scholar
  18. 18.
    I. Naniwa, K. Sato, S. Nakamura, and S. Kazutaka, Microsyst. Technol. 15, 1619 (2009).CrossRefGoogle Scholar
  19. 19.
    J.Y. Juang, D.B. Bogy, and C. Singh Bhatia, J. Tribol. 129, 161 (2007).CrossRefGoogle Scholar
  20. 20.
    S. Tadigadapa and K. Mateti, Meas. Sci. Technol. 20, 1 (2009).CrossRefGoogle Scholar
  21. 21.
    Y.Q. Fu, J.K. Luo, X.Y. Du, A.J. Flewitt, Y. Li, G.H. Markx, A.J. Walton, and W. Milne, Sens. Actuators B 143, 606 (2010).CrossRefGoogle Scholar
  22. 22.
    V.A. Fonoberov and A. Balandin, J. Nanoelectron. Optoelectron. 1, 19 (2006).CrossRefGoogle Scholar
  23. 23.
    K. Vijayalakshmi, K. Karthick, P. Dhivya, and M. Sridharan, Ceram. Int. 39, 5681 (2013).CrossRefGoogle Scholar
  24. 24.
    Y.C. Yang, C. Song, X.H. Wang, F. Zeng, and F. Pan, Appl. Phys. Lett. 92, 012907 (2008).CrossRefGoogle Scholar
  25. 25.
    L. Li, L. Fang, X.M. Chen, J. Liu, F.F. Yang, Q.J. Li, G.B. Liu, and S.J. Feng, Phys. E 41, 169 (2008).CrossRefGoogle Scholar
  26. 26.
    Y.Q. Chen, X.J. Zheng, and X. Feng, Nanotechnology 21, 055708 (2010).CrossRefGoogle Scholar
  27. 27.
    P.V. Radovanovic and D.R. Gamelin, Phys. Rev. Lett. 19, 157202 (2003).CrossRefGoogle Scholar
  28. 28.
    Yun-Ze Long, Meng-Meng Li, Gu Changzhi, Meixiang Wan, Jean-Luc Duvail, Zongwen Liu, and Zhiyong Fan, Prog. Polym. Sci. 36, 1415 (2011).CrossRefGoogle Scholar
  29. 29.
    Joe Briscoe, Mark Stewart, Melvin Vopson, Markys Cain, Paul M. Weaver, and Steve Dunn, Adv. Energy Mater. 2, 1261 (2012).CrossRefGoogle Scholar
  30. 30.
    Briscoe Joe, Nimra Jalali, Peter Woolliams, Mark Stewart, Paul M. Weaver, Markys Cain, and Steve Dunn, Energy Environ. Sci. 6, 3035 (2013).CrossRefGoogle Scholar
  31. 31.
    Savarimuthu Kirubaveni, Govindaraj Rajamanickam, Radha Shankararajan, Ramasamy Perumal, and Arokiyadoss Rayarfrancis, IEEE Trans. Nanotechnol. 16, 469 (2017).CrossRefGoogle Scholar
  32. 32.
    S.M. Lee, S.-H. Shin, J. Nah, and M.H. Lee, Nanotechnology 28, 395403 (2017).CrossRefGoogle Scholar
  33. 33.
    R. Mariappan, V. Ponnuswamy, P. Suresh, R. Suresh, and M. Ragavendar, Superlattices Microstruct. 59, 47 (2013).CrossRefGoogle Scholar
  34. 34.
    M. Soylu and O. Savas, Mater. Sci. Semicond. Process. 29, 76 (2015).CrossRefGoogle Scholar
  35. 35.
    A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, Y. Bouachiba, A. Grid, and T. Kerdjac, Mater. Sci. Semicond. Process. 28, 54 (2014).CrossRefGoogle Scholar
  36. 36.
    A. Watanabe, H. Chiba, T. Kawashima, and K. Washio, Thin Solid Films 605, 73 (2016).CrossRefGoogle Scholar
  37. 37.
    M. Sudha, S. Radha, S. Kirubaveni, R. Kiruthika, R. Govindaraj, and N. Santhosh, Solid State Sci. 78, 30 (2018).CrossRefGoogle Scholar
  38. 38.
    M. Laurenti, M. Castellino, D. Perrone, A. Asvarov, G. Canavese, and A. Chiolerio, Sci. Rep. 7, 41957 (2017).CrossRefGoogle Scholar
  39. 39.
    C.L. Hsu, S.J. Chang, Y.R. Lin, P.C. Li, T.S. Lin, S.Y. Tsai, T.H. Lu, and I.C. Chen, Chem. Phys. Lett. 416, 75 (2005).CrossRefGoogle Scholar
  40. 40.
    Y.C. Yang, C. Song, X.H. Wang, F. Zeng, and F. Pan, J. Appl. Phys. 103, 1 (2008).Google Scholar
  41. 41.
    N. Tahir, S.T. Hussain, M. Usman, S.K. Hasanain, and A. Mumtaz, Appl. Surf. Sci. 255, 8506 (2009).CrossRefGoogle Scholar
  42. 42.
    A. Yumak, G. Turgut, O. Kamoun, H. Ozisik, E. Deligoz, P. Petkova, R. Mimouni, K. Boubaker, M. Amlouk, and S. Goumri-Said, Mater. Sci. Semicond. Process. 39, 103 (2015).CrossRefGoogle Scholar
  43. 43.
    F. Urbach, Phys. Rev. 92, 1324 (1953).CrossRefGoogle Scholar
  44. 44.
    E.A. Meulenkamp, J. Phys. Chem. B 103, 7831 (1999).CrossRefGoogle Scholar
  45. 45.
    A. Yumak, S. Goumri-Said, W. Khan, K. Boubaker, and P. Petkova, Solid State Sci. 57, 33 (2016).CrossRefGoogle Scholar
  46. 46.
    Q. Qi, T. Zhang, L. Liu, X. Zheng, Q. Yu, Y. Zeng, and H. Yang, Sens. Actuators B Chem. 134, 166 (2008).CrossRefGoogle Scholar
  47. 47.
    R. Zhang, P.G. Yin, N. Wang, and L. Guo, Solid State Sci. 11, 865 (2009).CrossRefGoogle Scholar
  48. 48.
    S. Murugesan, R. Shankararajan, K. Savarimuthu, K. Ramany, G. Rajamanickam, S. Narendhiran, and R. Perumalsamy, IEEE Trans. Nanotechnol. 17, 169 (2018).CrossRefGoogle Scholar
  49. 49.
    A. Bedia, F.Z. Bedia, M. Aillerie, N. Maloufi, and B. Benyoucef, Energy Procedia 74, 529 (2015).CrossRefGoogle Scholar
  50. 50.
    W.K. Tan, K.A. Razak, K. Ibrahim, and Z. Lockman, J. Alloy. Compd. 509, 820 (2011).CrossRefGoogle Scholar
  51. 51.
    R.A. Zargar, M. Arora, M. Ahmad, and A.K. Hafiz, J. Mater. 2015, 1 (2015).CrossRefGoogle Scholar
  52. 52.
    S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed. (New York, NY: Wiley-Interscience, 2007).Google Scholar
  53. 53.
    J. Briscoe, N. Jalali, P. Woolliams, M. Stewart, P.M. Weaver, M. Cain, and S. Dunn, Energy Environ. Sci. 6, 3035 (2013).CrossRefGoogle Scholar
  54. 54.
    N. Jalali, P. Woolliams, M. Stewart, P.M. Weaver, M.G. Cain, S. Dunn, and J. Briscoe, Mater. Chem. A 210945, 10945 (2014).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Kiruthika Ramany
    • 1
    Email author
  • Radha Shankararajan
    • 1
  • Kirubaveni Savarimuthu
    • 1
  • Priyadharshini Elumalai
    • 1
  • Govindaraj Rajamanickam
    • 2
  • Santhosh Narendhiran
    • 2
  • Ramasamy Perumalsamy
    • 2
  1. 1.ECE DepartmentSSN College of EngineeringKalavakkamIndia
  2. 2.Department of PhysicsSSN Research CentreKalavakkamIndia

Personalised recommendations