Advertisement

Precision Manufacturing of NaNi1/3Mn1/3Co1/3O2 Cathodes: Study of Structure Evolution and Performance at Varied Calcination Temperatures

  • Ankit Goyal
  • Xiaodong Niu
  • Nam Phuong Pham Le
  • Nguyen Thanh Le Huynh
  • Van Man Tran
  • My Loan Phung Le
  • Liang GaoEmail author
  • Akhil Garg
Article
  • 2 Downloads

Abstract

In this paper, we have fabricated NaNi1/3Mn1/3Co1/3O2 cathodes using a hydroxide co-precipitation followed by a multi-step solid state process. The prepared cathodes were quenched at varied calcination temperatures cycles. Formation of P3 phase was observed at 600°C quenching temperature as confirmed by x-ray diffraction (XRD) studies. The transition from P3 phase to O3 phase was observed at higher temperature and complete transition occurred at 900°C with the formation of O3 phase. Rietveld Refinement was done to calculate the lattice parameters. Surface morphology of the prepared cells was studied by scanning electron microscopy. The prepared cells were tested for remaining capacity and Na+ concentrations after charging-discharging cycles. Multivariate adaptive regression splines (MARS) were used to determine the most optimal electrode fabrication conditions for good output from the batteries. The most optimized conditions for this set of experiments are T2 = 900°C, t2 = 48 h, T3 = 900°C, t3 = 6 h and number of cycles = 80 to obtain the highest remaining Na+ ion concentration and capacity. The proposed combined numerical and experimental framework provides a higher degree of automation with precision in experimental designs for electrode fabrication.

Keywords

Sodium-ion battery phase transition thermal quenching XRD charging–discharging MARS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to acknowledge Grant DMETKF2018019 by State Key Lab of Digital Manufacturing Equipment & Technology (Huazhong University of Science and Technology). The authors also wish to acknowledge that this research has been supported by Shantou University Scientific Research Foundation (Grant No. NTF 16002) and the Sailing Plan of Guangdong Province, China. This work was also supported by the National Foundation for Science and Technology Development (NAFOSTED) through the research project 104.06.2016-37. The authors also acknowledge China Scholarship Council for providing a Senior Scholar fellowship to Mr. Ankit Goyal under China Government Scholarship 2018-19 jointly with the Ministry of Human Resource and Development, Government of India.

Supplementary material

11664_2019_7340_MOESM1_ESM.pdf (87 kb)
Supplementary material 1 (PDF 86 kb)

References

  1. 1.
    M.S. Whittingham, Chem. Rev. 104, 4271 (2004).CrossRefGoogle Scholar
  2. 2.
    G.L. Xu, Q. Wang, J.C. Fang, Y.F. Xu, L. Huang, and S.G. Sun, J. Mater. Chem. A 2, 19941 (2014).CrossRefGoogle Scholar
  3. 3.
    Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, and J. Liu, Chem. Rev. 111, 3577 (2011).CrossRefGoogle Scholar
  4. 4.
    K. Kubota and S. Komaba, J. Electrochem. Soc. 162, A2538 (2015).CrossRefGoogle Scholar
  5. 5.
    N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba, Chem. Rev. 114, 11636 (2014).CrossRefGoogle Scholar
  6. 6.
    H. Pan, Y.-S. Hu, and L. Chen, Energy Environ. Sci. 6, 2338 (2013).CrossRefGoogle Scholar
  7. 7.
    H. Yoshida, N. Yabuuchi, and S. Komaba, Electrochem. Commun. 34, 60 (2013).CrossRefGoogle Scholar
  8. 8.
    N. Yabuuchi, M. Yano, H. Yoshida, S. Kuze, and S. Komaba, J. Electrochem. Soc. 160, A3131 (2013).CrossRefGoogle Scholar
  9. 9.
    S. Okada, Y. Takahashi, T. Kiyabu, T. Doi, J.-I. Yamaki, and T. Nishida, ECS Meet. Abstr. 2, 201 (2006).Google Scholar
  10. 10.
    H. Moriwake, A. Kuwabara, C.A.J. Fisher, M. Nose, H. Nakayama, S. Nakanishi, H. Iba, and Y. Ikuhara, J. Power Sources 326, 220 (2016).CrossRefGoogle Scholar
  11. 11.
    G.L. Xu, R. Amine, A. Abouimrane, H. Che, M. Dahbi, Z.F. Ma, I. Saadoune, J. Alami, W.L. Mattis, F. Pan, Z. Chen, and K. Amine, Adv. Energy Mater. 8, 1702403 (2018).CrossRefGoogle Scholar
  12. 12.
    M. Sathiya, K. Hemalatha, K. Ramesha, J.-M. Tarascon, and A.S. Prakash, Chem. Mater. 24, 1846 (2012).CrossRefGoogle Scholar
  13. 13.
    J.Y. Hwang, C.S. Yoon, I. Behlarouak, and Y.K. Sun, J. Mater. Chem. A 4, 17952 (2016).CrossRefGoogle Scholar
  14. 14.
    S. Sharma, A. Goyal, L. Gao, X. Niu, A. Garg, X. Meijuan, and J. Sandoval, Appl. Therm. Eng. 147, 545 (2019).CrossRefGoogle Scholar
  15. 15.
    Y.H. Liu and Y.F. Luo, IEEE Trans. Ind. Electron. 57, 3963 (2010).CrossRefGoogle Scholar
  16. 16.
    A. Goyal and P.R. Soni, Optoelectron. Adv. Mater. Rapid Commun. 10, 855 (2016).Google Scholar
  17. 17.
    S.D. Oduro, S. Metia, H. Duc, G. Hong, and Q.P. Ha, Vis. Eng. 3, 13 (2015).  https://doi.org/10.1186/s40327-015-0024-4.CrossRefGoogle Scholar
  18. 18.
    J. Xia, R. Petibon, A. Xiao, W.M. Lamanna, and J.R. Dahn, J. Electrochem. Soc. 163, A1637 (2016).CrossRefGoogle Scholar
  19. 19.
    J. Meng, G. Luo, E. Breaz, and F. Gao, IECON 2015—41st Annual Conference of the IEEE Industrial Electronics Society (2015).  https://doi.org/10.1109/iecon.2015.7392264
  20. 20.
    J.C.A. Anton, P.J.G. Nieto, F.J.C. Juez, F.S. Lasheras, C.B. Viejo, and N.R. Guttierrez, IEEE Trans. Power Electron. 28, 3798 (2013).CrossRefGoogle Scholar
  21. 21.
    X. Xia, W. Xu, X. Bai, X. Rui, H. Wang, J. Forster, Y. Wang, X. Zhao, X. Kong, and T. Liang, ISGT 2014 (2014).  https://doi.org/10.1109/isgt.2014.6816399
  22. 22.
    J.Y. Hwang, S.M. Oh, S.T. Myung, K.Y. Chung, and I. Behlarouak, Nat. Commun. 6, 6865 (2015).  https://doi.org/10.1038/ncomms7865.CrossRefGoogle Scholar
  23. 23.
    Handbook of Inorganic Chemicals, Pradniak, Pradyot (McGraw-Hill Publications, 2002)Google Scholar
  24. 24.
    S. Ivanova, E. Zhecheva, R. Kukeva, G.T. Tyuliev, D. Nihtianova, L. Mihaylov, and R. Stoyanova, J. Phys. Chem. C 120, 3654 (2016).  https://doi.org/10.1021/acs.jpcc.5b11910.CrossRefGoogle Scholar
  25. 25.
    A. Garg, K. Shankhwar, D. Jiang, V. Vijaya Raghavan, B.N. Panda, and S.S. Panda, Neural Comput. Appl. 29, 1233 (2018).CrossRefGoogle Scholar
  26. 26.
    L. Shui, F. Chen, A. Garg, X. Peng, N. Bao, and J. Zhang, Struct. Multidiscip. Optim. 58, 331 (2018).CrossRefGoogle Scholar
  27. 27.
    A. Garg, X. Peng, M.L.P. Le, K. Pareek, and C.M.M. Chin, Measurement 120, 114 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Intelligent Manufacturing Key Laboratory of Ministry of EducationShantou UniversityShantouChina
  2. 2.Department of Metallurgical and Materials EngineeringMalaviya National Institute of TechnologyJaipurIndia
  3. 3.Applied Physical Chemistry Laboratory, Department of Physical ChemistryViet Nam National University of Ho Chi Minh City (VNUHCM)Ho Chi Minh CityVietnam
  4. 4.State Key Lab of Digital Manufacturing Equipment and Technology, School of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations