Advertisement

Effect of Rare Earth Ions (R = Pr, Eu and Ho) on the Structural and Electrical Properties of Orthoferrites

  • Khalid SultanEmail author
  • Rubiya Samad
  • Shah Aarif Ul Islam
  • Mir Zubaida Habib
  • M. Ikram
Article
  • 8 Downloads

Abstract

The rare earth orthoferrites RFeO3 (R = Pr, Eu and Ho) were synthesized by the ceramic method. X-ray diffraction (XRD) was investigated to confirm the phase and orthorhombic structure with space group Pbnm. By varying rare earth ions, the lattice parameters and unit cell volume undergo non-monotonous changes. The slight shift in peaks towards higher 2θ for different R describes the lattice contraction, which is due to different ionic radii of the rare-earth ion in the samples. SEM (Scanning electron microscopy) micrographs reveal that the average grain size is lowest for HoFeO3. Dielectric studies reveal that the dielectric constant and dielectric loss decreases as the ionic radii of rare earth ion decreases. The ac conductivity shows that small polarons contribute to the conduction-mechanism.

Keywords

Ceramic method XRD space group dielectric study small polaron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are very thankful to Director Inter University Accelerator Center, New Delhi for providing the required experimental facilities.

References

  1. 1.
    J. Blasco, J. Stankiewicz, and J. Garcia, J. Solid State Chem. 179, 898 (2006).CrossRefGoogle Scholar
  2. 2.
    M.P. Pasternak, W.M. Xu, G.K. Rozenberg, and R.D. Taylor, Mat. Res. Soc. Symp Proc. 718 (2002).Google Scholar
  3. 3.
    S.J. Luo, S.Z. Li, N. Zhang, T. Wei, X.W. Dong, K.F. Wang, and J.M. Liu, Thin Solid Films 519, 240 (2010).CrossRefGoogle Scholar
  4. 4.
    J.S. Zhou and J.B. Goodenough, Phys. Rev. B. 77, 132104 (2008).CrossRefGoogle Scholar
  5. 5.
    N. Singh, J.Y. Rhee, and S. Auluck, J. Korean Phys. Soc. 53, 806–811 (2008).CrossRefGoogle Scholar
  6. 6.
    J. Zaanen, G.A. Sawatzky, and J.W. Aleen, Phys. Rev. Lett. 55, 418 (1985).CrossRefGoogle Scholar
  7. 7.
    A. Tiwari, J. Alloy. Compd. 274, 42 (1998).CrossRefGoogle Scholar
  8. 8.
    W. Koebler, E. Wallan, and M. Wilkinson, Phys. Rev. 118, 58 (1960).CrossRefGoogle Scholar
  9. 9.
    D. Treves, J. Appl. Phys. 36, 1033 (1965).CrossRefGoogle Scholar
  10. 10.
    I. Plevy, H. Jacob, and L.Lewnson Uarne, J. Appl. Phys. 42, 1631 (1971).CrossRefGoogle Scholar
  11. 11.
    S.A. Patil, S.M. Otari, V.C. Mahajan, M.G. Patil, M.K. Sovdagas, B.L. Patil, and S.R. Swant, Solid State Commun. 78, 39 (1991).CrossRefGoogle Scholar
  12. 12.
    A.M. Glazer, Acta Crystallogr. Sect B StructCrystallogrCrystChem 28, 3384 (1972).CrossRefGoogle Scholar
  13. 13.
    B. Deka and S. Ravi, A. Perumal and Ceramics International, 43, 1323–1334 (2017).Google Scholar
  14. 14.
    K.S. Aleksandrov and J. Bartolome, Phase Transit. 74, 255 (2001).CrossRefGoogle Scholar
  15. 15.
    R. White, J. Appl. Phys. 40, 1061 (1969).CrossRefGoogle Scholar
  16. 16.
    K. Sultan, M. Ikram, and K. Asokan, Vacuum 99, 251–258 (2014).CrossRefGoogle Scholar
  17. 17.
    Z. Habib, M. Ikram, K.Majid, and K. Asokan, Appl. Phys. A (2014).Google Scholar
  18. 18.
    B. Lal, S.K. Khosa, R. Tickoo, K.K. Bamzai, and P.N. Kotru, Mater. Chem. Phys. 83, 158–168 (2004).CrossRefGoogle Scholar
  19. 19.
    D. Ravinder and K. Vijay Kumar, Bull. Mater. Sci. 24, 505–509 (2001).CrossRefGoogle Scholar
  20. 20.
    V. Hangloo, R. Tickoo, K.K. Bamzai, and P.N. Kotru, Mater. Chem. Phys. 81, 152–159 (2003).CrossRefGoogle Scholar
  21. 21.
    S. Bhat, S.K. Khosa, P.N. Kotru, and R.P. Tandon, J. Mater. Sci. Lett. 14, 564–567 (1995).CrossRefGoogle Scholar
  22. 22.
    A. Berenov, E. Angeles, J. Rossiny, E. Raj, J. Kilner, and A. Atkinson, Solid State Ionics 179, 1090–1093 (2008).CrossRefGoogle Scholar
  23. 23.
    K.K. Patankar, S.S. Joshi, and B.K. Chougule, Phys. Lett. A 346, 337 (2005).CrossRefGoogle Scholar
  24. 24.
    Feinleib Adler, J. Phys. Rev. B 2, 3312 (1970).CrossRefGoogle Scholar
  25. 25.
    L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, and S.R. Sehlin, Solid State Ionics 76, 273–283 (1995).CrossRefGoogle Scholar
  26. 26.
    T. Montini, M. Bevilacqua, E. Fonda, M.F. Casula, S. Lee, C. Tavagnacco, R.J. Gorte, and P. Fornasiero, Chem. Mater. 21, 1768–1774 (2009).Google Scholar
  27. 27.
    S. Uhlenbruck and F. Tietz, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 107–282 (2004).Google Scholar
  28. 28.
    S. Yamaguchi, Y. Okimoto, and Y. Tokura, Phys. Rev. B 54, R11022–R11025 (1996).CrossRefGoogle Scholar
  29. 29.
    J.S. Zhou and J.B. Goodenough, Phys. Rev. Lett. 94, 065501 (2005).CrossRefGoogle Scholar
  30. 30.
    J.B. Goodenough and J.S. Zhou, J. Mater. Chem. 17, 2394–2405 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Khalid Sultan
    • 1
    Email author
  • Rubiya Samad
    • 1
  • Shah Aarif Ul Islam
    • 2
  • Mir Zubaida Habib
    • 3
  • M. Ikram
    • 2
  1. 1.Department of PhysicsCentral University of KashmirGanderbalIndia
  2. 2.Department of PhysicsNational Institute of TechnologyHazratbal, SrinagarIndia
  3. 3.Department of School EducationPattanIndia

Personalised recommendations