Advertisement

On Investigations of the Optical Absorption Coefficient of Gold and Germanium Implanted Silicon with the Use of the Non-destructive Contactless Photo Thermal Infrared Radiometry

  • Ł. ChrobakEmail author
  • M. Maliński
Open Access
Article
  • 21 Downloads

Abstract

In this paper results of investigations of Au2+ and Ge+ ion-implanted silicon samples with the use of the nondestructive frequency and the space domain photo thermal infrared radiometry (PTR) method are presented. Frequency amplitude characteristics and spatial amplitude distributions of the PTR signal for the implanted silicon samples were measured and analyzed. Measurements have been performed for several wavelengths of the exciting light. The dependence of the amplitude of the PTR signal on the optical and recombination parameters of the implanted layers has been analyzed experimentally and theoretically and discussed. The objective of this work is to present the possibilities of investigations of the influence of the high energy and high dose implantation process into silicon on the optical and recombination parameters of implanted silicon with the use of the frequency and spatial domain PTR method. Observed changes in the measured signal have been explained by simultaneous changes of values of the optical absorption coefficient and carriers lifetime of implanted layers.

Keywords

Ion implanted silicon nondestructive optical characterization optical absorption coefficient photo thermal infrared radiometry technique implanted areas imaging 

Notes

Acknowledgments

We thank Dr. Nadezhda Kukharchyk for preparation of the silicon implanted samples.

References

  1. 1.
    A.G. Lewis, R.A. Martin, T.-Y. Huang, J.Y. Chen, and M. Koyanagi, IEEE Trans. Electron. Dev. ED-34, 2156 (1987).CrossRefGoogle Scholar
  2. 2.
    N.W. Cheung, C.L. Liang, B.K. Liew, R.H. Mutikainen, and H. Wong, Nucl. Instrum. Methods B 37–38, 941 (1989).CrossRefGoogle Scholar
  3. 3.
    J. Wong-Leung, J.S. Williams, and E. Nygren, Nucl. Instrum. Methods B 106, 424 (1995).CrossRefGoogle Scholar
  4. 4.
    S. Coffa, L. Calcagno, G. Ferla, and S.U. Campisano, J. Appl. Phys. 68, 1601 (1990).CrossRefGoogle Scholar
  5. 5.
    V. Lavrentiev, J. Vacik, V. Vorlicek, and V. Vosecek, Phys. Status Solidi B 247, 2022 (2010).CrossRefGoogle Scholar
  6. 6.
    G. Sahu, R. Kumar, and D.P. Mahapatra, Silicon 6, 65 (2016).CrossRefGoogle Scholar
  7. 7.
    M. Voelskow, I. Stoimenos, L. Rebohle, and W. Skorupa, Phys. Status Solidi C 8, 960 (2011).CrossRefGoogle Scholar
  8. 8.
    K. Gao, S. Prucnal, A. Mücklich, W. Skorupa, and S. Zhou, Acta Phys. Pol. A 123, 858 (2013).CrossRefGoogle Scholar
  9. 9.
    R. Kögler, A. Peeva, A. Mücklich, F. Eichhorn, and W. Skorupa, Appl. Phys. Lett. 88, 101918 (2006).CrossRefGoogle Scholar
  10. 10.
    M.L. Lee and E.A. Fitzgerald, J. Appl. Phys. 97, 011101 (2005).CrossRefGoogle Scholar
  11. 11.
    S.N. Dedyulin and L.V. Goncharova, Nucl. Instrum. Methods B 272, 334 (2012).CrossRefGoogle Scholar
  12. 12.
    D. Balageas, X. Maldague, D. Burleigh, V.P. Vavilov, B. Oswald-Tranta, J.-M. Roche, C. Pradere, and G.M. Carlomagno, J. Nondestruct. Eval. 35, 18 (2016).CrossRefGoogle Scholar
  13. 13.
    P.-E. Nordal and S.O. Kanstad, Phys. Scr. 20, 659 (1979).CrossRefGoogle Scholar
  14. 14.
    M. Lukić, Ž. Ćojbašić, M.D. Rabasović, D.D. Markushev, and D.M. Todorović, Int. J. Thermophys. 38, 165 (2017).CrossRefGoogle Scholar
  15. 15.
    D.M. Todorovic, M.D. Rabasovic, D.D. Markushev, V. Jovic, and K.T. Radulovic, Int. J. Thermophys. 38, 40 (2017).CrossRefGoogle Scholar
  16. 16.
    A. Zegadi, M.A. Slifkin, M. Djamin, R.D. Tomlinson, and H. Neumann, Solid State Commun. 83, 587 (1992).CrossRefGoogle Scholar
  17. 17.
    M. Maliński, Ł. Chrobak, and L. Bychto, Solid State Commun. 150, 424 (2010).CrossRefGoogle Scholar
  18. 18.
    Ł. Chrobak, M. Malinski, and J. Zakrzewski, Thermochim. Acta 606, 84 (2015).CrossRefGoogle Scholar
  19. 19.
    Ł. Chrobak, M. Maliński, and J. Zakrzewski, Thermochim. Acta 641, 79 (2016).CrossRefGoogle Scholar
  20. 20.
    H. Benamrani, F.Z. Satour, A. Zegadi, and A. Zouaoui, J. Lumin. 132, 305 (2012).CrossRefGoogle Scholar
  21. 21.
    K. Strzałkowski, Mater. Chem. Phys. 163, 453 (2015).CrossRefGoogle Scholar
  22. 22.
    D. Dadarlat, M. Streza, O. Onija, C. Prejmerean, L. Silaghi-Dumitrescu, N. Cobirzan, and K. Strzałkowski, J. Therm. Anal. Calorim. 119, 301 (2015).CrossRefGoogle Scholar
  23. 23.
    K. Strzałkowski, J. Phys. D Appl. Phys. 49, 435106 (2016).CrossRefGoogle Scholar
  24. 24.
    S.W. Glunz and W. Warta, J. Appl. Phys. 77, 3243 (1995).CrossRefGoogle Scholar
  25. 25.
    S.W. Glunz, A.B. Sproul, W. Warta, and W. Wettling, J. Appl. Phys. 75, 1611 (1994).CrossRefGoogle Scholar
  26. 26.
    F. Sanii, F.P. Giles, R.J. Schwartz, and J.L. Gray, Solid State Electron. 35, 311 (1992).CrossRefGoogle Scholar
  27. 27.
    M. Malinski, L. Chrobak, W. Madej, and N. Kukharchyk, Int. J. Thermophys. 38, 110 (2017).CrossRefGoogle Scholar
  28. 28.
    Ł. Chrobak and M. Maliński, Opt. Mater. 86, 484 (2018).CrossRefGoogle Scholar
  29. 29.
    A. Salnick, A. Mandelis, and C. Jean, Appl. Phys. Lett. 69, 2522 (1996).CrossRefGoogle Scholar
  30. 30.
    M.E. Rodriguez, A. Mandelis, F. Rabago, and L. Nicolaides, Anal. Sci. 17, 277 (2001).CrossRefGoogle Scholar
  31. 31.
    A. Othonos, C. Christofides, and A. Mandelis, Appl. Phys. Lett. 69, 821 (1996).CrossRefGoogle Scholar
  32. 32.
    A. Othonos, A. Salnic, A. Mandelis, and C. Christofides, Phys. Status Solidi A 161, R13 (1997).CrossRefGoogle Scholar
  33. 33.
    S. Pham Tu Quoc, G. Cheymol, and A. Semerok, Rev. Sci. Instrum. 85, 054903 (2014).CrossRefGoogle Scholar
  34. 34.
    J. Pelzl, P. Kijamnajsuk, M. Chirtoc, N. Horny, and C. Eisenmenger-Sittner, Int. J. Thermophys. 36, 2475 (2015).CrossRefGoogle Scholar
  35. 35.
    P. Kijamnajsuk, J. Pelzl, M. Chirtoc, N. Horny, D. Schäfer, and C. Eisenmenger-Sittner, Int. J. Thermophys. 33, 2132 (2012).CrossRefGoogle Scholar
  36. 36.
    M. Maliński, M. Pawlak, Ł. Chrobak, S. Pal, and A. Ludwig, Appl. Phys. A Mater. 118, 1009 (2015).CrossRefGoogle Scholar
  37. 37.
    Ł. Chrobak, M. Maliński, and M. Pawlak, Infrared Phys. Technol. 67, 604 (2014).CrossRefGoogle Scholar
  38. 38.
    F. Macedo, F. Vaz, L. Rebouta, P. Carvalho, A. Haj-Daoud, K.H. Junge, J. Pelzl, and B.K. Bein, Vacuum 82, 1457 (2008).CrossRefGoogle Scholar
  39. 39.
    J. Borges, F. Macedo, F.M. Couto, M.S. Rodrigues, C. Lopes, P. Pedrosa, T. Polcar, L. Marques, and F. Vaz, Mater. Chem. Phys. 163, 569 (2015).CrossRefGoogle Scholar
  40. 40.
    Ł. Chrobak and M. Maliński, Infrared Phys. Technol. 89, 46 (2018).CrossRefGoogle Scholar
  41. 41.
    S. Chotikaprakhan, F. Vaz, R.T. Faria Jr, A.C. Fernandes, P. Kijamnajsuk, J. Gibkes, B.K. Bein, and F. Macedo, J. Phys: Conf. Ser. 214, 012081 (2010).Google Scholar
  42. 42.
    A. Kusiak, J. Martan, J.L. Battaglia, and R. Daniel, Thermochim. Acta 556, 1 (2013).CrossRefGoogle Scholar
  43. 43.
    A. Salnick, A. Mandelis, H. Ruda, and C. Jean, J. Appl. Phys. 82, 1853 (1997).CrossRefGoogle Scholar
  44. 44.
    A. Mandelis, Solid State Electron. 42, 1 (1998).CrossRefGoogle Scholar
  45. 45.
    M. Nestoros, Y. Karmiotis, and C. Christofidesa, J. Appl. Phys. 82, 6220 (1997).CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Faculty of Electronics and Computer ScienceKoszalin University of TechnologyKoszalinPoland

Personalised recommendations