Polyacrylonitrile-Based Nitrogen-Doped Carbon Materials with Different Micro-morphology Prepared by Electrostatic Field for Supercapacitors

  • Qingyuan Niu
  • Shuyan Zhao
  • Kezheng GaoEmail author
  • Lizhen WangEmail author


Polyacrylonitrile (PAN)-based nitrogen-doped carbon materials with microspherical and nanofibrous morphology were fabricated by using electrostatic technology and carbonization processes. The microscopic morphology of the PAN-based nitrogen-doped carbon precursor materials can be effectively controlled by simply changing the concentration of the PAN solution. When the concentration of the PAN solution was less than 6%, the morphology of the PAN-based carbon precursor material changed from nanofiber to microsphere. The morphology of the precursor material during carbonization had a significant effect on the pore size distribution of the PAN-based nitrogen-doped carbon materials. Therefore, the electrochemical properties of the PAN-based nitrogen-doped carbon nanofibers differed considerably from those of the counterpart microspheres. The electrochemical performance of the PNCF-6 was far superior to those of PNCS-1 and PNCS-4. At a relatively low power density of about 62.4 W kg−1, the PNCF-6 showed the largest energy density (5.4 Wh kg−1).


Polyacrylonitrile carbon nanofiber carbon microsphere electrostatic field supercapacitor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Supplementary material

11664_2019_7332_MOESM1_ESM.pdf (278 kb)
Supplementary material 1 (PDF 277 kb)


  1. 1.
    M. Yang and Z. Zhou, Adv. Sci. 4, 1600408 (2017).CrossRefGoogle Scholar
  2. 2.
    Q. Luo, H. Ma, Y. Zhang, X. Yin, Z. Yao, N. Wang, J. Li, S. Fan, K. Jiang, and H. Lin, J. Mater. Chem. A 4, 5569 (2016).CrossRefGoogle Scholar
  3. 3.
    X. Miao, D. Qu, D. Yang, B. Nie, Y. Zhao, H. Fan, and Z. Sun, Adv. Mater. 30, 1704740 (2018).CrossRefGoogle Scholar
  4. 4.
    G. Fu, X. Yan, Y. Chen, L. Xu, D. Sun, J.-M. Lee, and Y. Tang, Adv. Mater. 30, 1704609 (2018).CrossRefGoogle Scholar
  5. 5.
    C. Hu and L. Dai, Adv. Mater. 29, 1604942 (2017).CrossRefGoogle Scholar
  6. 6.
    X. Liu and L. Dai, Nat. Rev. Mater. 1, 16064 (2016).CrossRefGoogle Scholar
  7. 7.
    J. Gong, H. Lin, M. Antonietti, and J. Yuan, J. Mater. Chem. A 4, 7313 (2016).CrossRefGoogle Scholar
  8. 8.
    J. Wang and S. Kaskel, J. Mater. Chem. 22, 23710 (2012).CrossRefGoogle Scholar
  9. 9.
    L.L. Zhang and X.S. Zhao, Chem. Soc. Rev. 38, 2520 (2009).CrossRefGoogle Scholar
  10. 10.
    A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, and D. Aurbach, J. Mater. Chem. A 5, 12653 (2017).CrossRefGoogle Scholar
  11. 11.
    Q. Ma, Y. Yu, M. Sindoro, A.G. Fane, R. Wang, and H. Zhang, Adv. Mater. 29, 1605361 (2017).CrossRefGoogle Scholar
  12. 12.
    C. Cheng, S. He, C. Zhang, C. Du, and W. Chen, Electrochim. Acta 290, 98 (2018).CrossRefGoogle Scholar
  13. 13.
    X. Zhang, Q. Fan, H. Yang, H. Xiao, and Y. Xiao, New J. Chem. 42, 17389 (2018).CrossRefGoogle Scholar
  14. 14.
    X. Ren, H. Fan, J. Ma, C. Wang, M. Zhang, and N. Zhao, Appl. Surf. Sci. 441, 194 (2018).CrossRefGoogle Scholar
  15. 15.
    M. Zhang, H. Fan, N. Zhao, H. Peng, X. Ren, W. Wang, H. Li, G. Chen, Y. Zhu, X. Jiang, and P. Wu, Chem. Eng. J. 347, 291 (2018).CrossRefGoogle Scholar
  16. 16.
    G. Dong, H. Fan, K. Fu, L. Ma, S. Zhang, M. Zhang, J. Ma, and W. Wang, Compos. Part B Eng. 162, 369 (2019).CrossRefGoogle Scholar
  17. 17.
    M. Zhang, H. Fan, X. Ren, N. Zhao, H. Peng, C. Wang, X. Wu, G. Dong, C. Long, W. Wang, Y. Gao, L. Ma, P. Wu, H. Li, and X. Jiang, J. Power Sources 418, 202 (2019).CrossRefGoogle Scholar
  18. 18.
    J. Fang, H. Fan, M. Li, and C. Long, J. Mater. Chem. A 3, 13819 (2015).CrossRefGoogle Scholar
  19. 19.
    J. Hou, C. Cao, F. Idrees, and X. Ma, ACS Nano 9, 2556 (2015).CrossRefGoogle Scholar
  20. 20.
    J. Hou, C. Cao, X. Ma, F. Idrees, B. Xu, X. Hao, and W. Lin, Sci. Rep. 4, 7260 (2014).CrossRefGoogle Scholar
  21. 21.
    E. Raymundo-Pinero, K. Kierzek, J. Machnikowski, and F. Beguin, Carbon 44, 2498 (2006).CrossRefGoogle Scholar
  22. 22.
    C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi, and P. Simon, J. Am. Chem. Soc. 130, 2730 (2008).CrossRefGoogle Scholar
  23. 23.
    Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao, M. Wu, and Y. Lei, Nat. Commun. 9, 1720 (2018).CrossRefGoogle Scholar
  24. 24.
    J. Yan, T. Wei, Z. Fan, in Abstracts of Papers of the American Chemical Society (2014), pp. 248.Google Scholar
  25. 25.
    M. Liu, F. Zhao, D. Zhu, H. Duan, Y. Lv, L. Li, and L. Gan, Mater. Chem. Phys. 211, 234 (2018).CrossRefGoogle Scholar
  26. 26.
    L. Qiu, D. Li, and H.-M. Cheng, ACS Nano 12, 5085 (2018).CrossRefGoogle Scholar
  27. 27.
    L. Yao, Q. Wu, P. Zhang, J. Zhang, D. Wang, Y. Li, X. Ren, H. Mi, L. Deng, and Z. Zheng, Adv. Mater. 30, 1706054 (2018).CrossRefGoogle Scholar
  28. 28.
    Z.-Y. Wu, H.-W. Liang, L.-F. Chen, B.-C. Hu, and S.-H. Yu, Acc. Chem. Res. 49, 96 (2016).CrossRefGoogle Scholar
  29. 29.
    L.-F. Chen, Y. Lu, L. Yu, and X.W. Lou, Energy Environ. Sci. 10, 1777 (2017).CrossRefGoogle Scholar
  30. 30.
    Y. Hu, D. Ye, B. Luo, H. Hu, X. Zhu, S. Wang, L. Li, S. Peng, and L. Wang, Adv. Mater. 30, 1703824 (2018).CrossRefGoogle Scholar
  31. 31.
    H. Niu, J. Zhang, Z. Xie, X. Wang, and T. Lin, Carbon 49, 2380 (2011).CrossRefGoogle Scholar
  32. 32.
    X. Qiu, L. Wang, and L.-Z. Fan, J. Mater. Chem. A 6, 7835 (2018).CrossRefGoogle Scholar
  33. 33.
    X. Hao, X. Lu, Z. Li, Y. Zhao, T. Shang, Q. Yang, C. Wang, and L. Li, J. Appl. Polym. Sci. 102, 2889 (2006).CrossRefGoogle Scholar
  34. 34.
    A. Smeets, C. Clasen, and G. Van den Mooter, Eur. J. Pharm. Biopharm. 119, 114 (2018).CrossRefGoogle Scholar
  35. 35.
    Q. Niu, K. Gao, Q. Tang, L. Wang, L. Han, H. Fang, Y. Zhang, S. Wang, and L. Wang, Carbon 123, 290 (2017).CrossRefGoogle Scholar
  36. 36.
    H. Xie, K. Fu, C. Yang, Y. Yao, J. Rao, Y. Zhou, B. Liu, D. Kirsch, and L. Hu, Small Methods 2, 1700371 (2018).Google Scholar
  37. 37.
    S.-H. Wu and X.-H. Qin, J. Therm. Anal. Calorim. 116, 303 (2014).CrossRefGoogle Scholar
  38. 38.
    S. Wu, A. Gao, Y. Wang, and L. Xu, J. Mater. Sci. 53, 8627 (2018).CrossRefGoogle Scholar
  39. 39.
    L. Jiang, L. Sheng, X. Chen, T. Wei, and Z. Fan, J. Mater. Chem. A 4, 11388 (2016).CrossRefGoogle Scholar
  40. 40.
    D. Mitlin, in Abstracts of Papers of the American Chemical Society (2015), pp. 249.Google Scholar
  41. 41.
    A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Poschl, Carbon 43, 1731 (2005).CrossRefGoogle Scholar
  42. 42.
    G.A. Zickler, B. Smarsly, N. Gierlinger, H. Peterlik, and O. Paris, Carbon 44, 3239 (2006).CrossRefGoogle Scholar
  43. 43.
    W. Tian, Q. Gao, Y. Tan, K. Yang, L. Zhu, C. Yang, and H. Zhang, J. Mater. Chem. A 3, 5656 (2015).CrossRefGoogle Scholar
  44. 44.
    T. Lin, I.W. Chen, F. Liu, C. Yang, H. Bi, F. Xu, and F. Huang, Science 350, 1508 (2015).CrossRefGoogle Scholar
  45. 45.
    Y. Liu, X. Gao, Z. Hong, and W. Shi, J. Mater. Chem. A 4, 8983 (2016).CrossRefGoogle Scholar
  46. 46.
    Y. He, Y. Bai, X. Yang, J. Zhang, L. Kang, H. Xu, F. Shi, Z. Lei, and Z.-H. Liu, J. Power Sources 317, 10 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Material and Chemical EngineeringZhengzhou University of Light IndustryZhengzhouPeople’s Republic of China

Personalised recommendations