Effect of TiO2 Concentration on the Non-Volatile Memory Behavior of TiO2-PVA Polymer Nanocomposites

  • Jyoti
  • Ramneek Kaur
  • Sukhdeep Singh
  • Jadab Sharma
  • S. K. TripathiEmail author


In the current work, we report the fabrication of titanium dioxide polymer nanocomposite (TiO2 PNC) memory devices. TiO2 PNCs were fabricated at three different solution volume ratios with polymer polyvinyl alcohol (PVA), i.e. TiO2-PVA :: 1:100, 1:50 and 1:10. The effect of increased concentration of TiO2 nanoparticles (NPs) was studied. TiO2 NPs were synthesized by the sol–gel method. High-resolution transmission electron microscopy images of the prepared TiO2 NPs were acquired. Fluorine-doped tin oxide (FTO)-coated glass was used as a substrate for device fabrication. PNCs were characterized by x-ray diffraction spectroscopy, and the TiO2-PVA (1:10) device was also morphologically characterized by field emission scanning electron microscopy. The thickness of the PNC film is 14 μm. These devices exhibit bipolar switching behavior, with the maximum ON/OFF current ratio (ION/IOFF) of ∼ 103 for the FTO/TiO2-PVA (1:10)/Ag device. Current–voltage (IV) curves show hysteresis as a result of the formation and rupture of conductive filaments due to the migration of oxygen vacancies. Write-read-erase-read test cycles show good repeatability, stability and retention properties. The results thus prove that the TiO2-PVA devices are strong candidates for next-generation non-volatile memory devices because of their large ON/OFF current ratio, repeatability and stability.


Memory devices ON/OFF current ratio polymer nanocomposites TiO2 NPs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is financially supported by the DST (PURSE) and CAS Grant. Ms. Jyoti is grateful to DST, New Delhi for provision of the fellowship.


  1. 1.
    G.U. Siddiqui, M.M. Rehman, and K.H. Choi, Polym. J. 100, 102 (2016).CrossRefGoogle Scholar
  2. 2.
    S. Goswami, A.J. Matula, S.P. Rath, S. Hedstrion, S. Saha, M. Annamalai, D. Sengupta, A. Patra, S. Gosh, H. Jani, S. Sarkar, M.R. Mothapothula, C.A. Nijhuis, J. Martin, S. Goswami, V.S. Batista, and T. Venkatensan, Nat. Mater. 16, 1216 (2017).CrossRefGoogle Scholar
  3. 3.
    R. Kaur and S.K. Tripathi, Org. Electron. 61, 235 (2018).CrossRefGoogle Scholar
  4. 4.
    P.F. Lee and J.Y. Dai, Nanotechnology 21, 295706 (2010).CrossRefGoogle Scholar
  5. 5.
    S.K. Tripathi, R. Kaur, and Jyoti, Mater. Sci. Eng. B 211, 7 (2016).CrossRefGoogle Scholar
  6. 6.
    H. Yu, C.C. Chung, N. Shewmon, S. Ho, J.H. Carpenter, R. Harrabee, T. Sun, J.L. Jones, H. Ade, B.T. O’Connor, and F. So, Adv. Funct. Mater. 27, 1700461 (2017).CrossRefGoogle Scholar
  7. 7.
    D. Liu, Q. Lin, Z. Zang, M. Wang, P. Wangyang, X. Tang, M. Zhou, and W. Hu, ACS Appl. Mater. Interfaces 9, 6171 (2017).CrossRefGoogle Scholar
  8. 8.
    F. Pan, C. Chen, Z.S. Wang, Y. Yang, J. Yang, and F. Zeng, Prog. Nat. Sci. Mater. 20, 01 (2010).CrossRefGoogle Scholar
  9. 9.
    R. Kaur and S.K. Tripathi, Microelectron. Eng. 133, 59 (2015).CrossRefGoogle Scholar
  10. 10.
    A. Kuzmich, D. Padula, H. Ma, and A. Troisi, Energy Environ. Sci. 10, 395 (2017).CrossRefGoogle Scholar
  11. 11.
    M. Gutiérrez, C. Martin, K. Kennes, J. Hofkens, M.V. Auweraer, F. Sánchez, and A. Douhal, Adv. Opt. Mater. 6, 1701060 (2018).CrossRefGoogle Scholar
  12. 12.
    R. Kaur, J. Kaur, and S.K. Tripathi, Solid State Electron. 109, 82 (2015).CrossRefGoogle Scholar
  13. 13.
    C.C. Shih, W.Y. Lee, and W.C. Chen, Mater. Horiz. 3, 294 (2016).CrossRefGoogle Scholar
  14. 14.
    Y.H. Chou, Y.C. Chiu, W.Y. Lee, and W.C. Chen, Chem. Commun. 51, 2562 (2015).CrossRefGoogle Scholar
  15. 15.
    Y. Zhou, L. Zhou, Y. Yan, S.T. Han, J. Zhuang, Q.J. Sun, S.T. Han, and V.A.L. Roy, J. Mater. Chem. C. 5, 8415 (2017).CrossRefGoogle Scholar
  16. 16.
    P.C. Kao, C.C. Liu, and T.Y. Li, Org. Electron. 12, 203 (2015).CrossRefGoogle Scholar
  17. 17.
    Y. Wang, Q. Liu, S. Long, W. Wang, Q. Wang, M. Zhang, S. Zhang, Y. Li, Q. Lou, J. Yang, and M. Liu, Nanotechnology 21, 045202 (2010).CrossRefGoogle Scholar
  18. 18.
    P. Zang, C. Gao, B. Xu, C. Jiang, M. Gao, and D. Xue, Small 12, 2077 (2016).CrossRefGoogle Scholar
  19. 19.
    M.M. Rehman, B.S. Yang, Y.J. Yang, K.S. Karimov, and K.H. Choi, Curr. Appl. Phys. 17, 533 (2017).CrossRefGoogle Scholar
  20. 20.
    D. Chaudhary, S. Munjal, N. Khare, and V.D. Vankar, Carbon 130, 553 (2018).CrossRefGoogle Scholar
  21. 21.
    R.M. Mutiso and K.I. Winey, Prog. Polym. Sci. 40, 63 (2015).CrossRefGoogle Scholar
  22. 22.
    G. Khurana, P. Misra, and R.S. Katiyar, Carbon 76, 341 (2014).CrossRefGoogle Scholar
  23. 23.
    R. Kaur, J. Singh, and S.K. Tripathi, Curr. Appl. Phys. 17, 756 (2017).CrossRefGoogle Scholar
  24. 24.
    J.M. Kim, D.H. Lee, J.H. Jeun, T.S. Yoon, H.H. Lee, J.W. Lee, and Y.S. Kim, Synth. Met. 161, 1155 (2011).CrossRefGoogle Scholar
  25. 25.
    S.K. Vishwanath and J. Kim, J. Mater. Chem. C 4, 10967 (2011).CrossRefGoogle Scholar
  26. 26.
    J. Ge, M. Chaker, and A.C.S. Appl, Mater. Interfaces 9, 16327 (2017).CrossRefGoogle Scholar
  27. 27.
    S.K. Tripathi, M. Rani, and N. Singh, Electrochem. Acta 167, 179 (2015).CrossRefGoogle Scholar
  28. 28.
    M.M.E. Nahass, H.S. Soliman, and A. El, Denglawey. Appl. Phys. A 122, 775 (2016).CrossRefGoogle Scholar
  29. 29.
    A.C. Khot, N.D. Desai, K.V. Khot, M.M. Salunkhe, M.A. Chougule, T.M. Bhave, R.K. Kamat, K.P. Musselman, and T.D. Dongale, Mater. Des. 151, 37 (2018).CrossRefGoogle Scholar
  30. 30.
    C.C. Yang, J. Membr. Sci. 288, 51 (2007).CrossRefGoogle Scholar
  31. 31.
    N. Raghavan, M. Bosman, D.D. Frey, and K.L. Pey, Microelectron. Reliab. 54, 2266 (2014).CrossRefGoogle Scholar
  32. 32.
    H.H. Pham and L.W. Wang, Phys. Chem. Chem. Phys. 17, 541 (2015).CrossRefGoogle Scholar
  33. 33.
    K. Park and J.S. Lee, RSC Adv. 6, 21736 (2016).CrossRefGoogle Scholar
  34. 34.
    S. Nigo, M. Kubota, Y. Harada, T. Hirayama, S. Kato, H. Kitazawa, and G. Kido, J. Appl. Phys. 112, 033711 (2012).CrossRefGoogle Scholar
  35. 35.
    W. Hu, L. Zou, R. Chen, W. Xie, X. Chen, N. Qin, S. Li, G. Yang, and D. Bao, Appl. Phys. Lett. 104, 143502 (2014).CrossRefGoogle Scholar
  36. 36.
    M. Janousch, G.I. Meijer, U. Staub, B. Delly, S.F. Karg, and B.P. Andreasson, Adv. Mater. 19, 2332 (2007).CrossRefGoogle Scholar
  37. 37.
    V.K. Sahu, A.K. Das, R.S. Ajimsha, and P. Misra, J. Phys. D Appl. Phys. 21, 215101 (2018).CrossRefGoogle Scholar
  38. 38.
    D. Conti, A. Lamberti, S. Porro, P. Rivolo, A. Chiolerio, C.F. Pirri, and C. Ricciardi, Nanotechnology 27, 485208 (2016).CrossRefGoogle Scholar
  39. 39.
    D. Chu, A. Younis, and S. Lio, J. Phys. D Appl. Phys. 45, 355306 (2012).CrossRefGoogle Scholar
  40. 40.
    J.E. Yoo, K. Lee, A. Tighineanu, and P. Schmuki, Electrochem. Commun. 34, 177–180 (2013).CrossRefGoogle Scholar
  41. 41.
    F. Yang, S. Mao, S. Zhu, Y. Jia, L. Yuan, M. Salmen, and B. Sun, Chem. Phys. Lett. 706, 477 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Jyoti
    • 1
  • Ramneek Kaur
    • 2
  • Sukhdeep Singh
    • 3
  • Jadab Sharma
    • 1
  • S. K. Tripathi
    • 1
    • 3
    Email author
  1. 1.Centre for Nanoscience and NanotechnologyPanjab UniversityChandigarhIndia
  2. 2.Department of PhysicsAkal UniversityTalwandi SaboIndia
  3. 3.Department of PhysicsPanjab UniversityChandigarhIndia

Personalised recommendations