Thermoelectric Properties of Two-Dimensional Gallium Telluride

  • Hejing Shangguan
  • Lihong HanEmail author
  • Tao Zhang
  • Ruge Quhe
  • Qian Wang
  • Shanjun LiEmail author
  • Pengfei Lu


Phonon, electronic and thermoelectric transport properties of two-dimensional (2D) GaTe with hexagonal structure and monoclinic structure are investigated by using first-principles calculations. Stability of these structures are confirmed by phonon dispersion calculations. The hexagonal structure shows better thermoelectric properties because of its lower thermal conductivity, higher electrical conductivities and Seebeck coefficients. The maximum value of the figure of merit (ZT) for GaTe reaches 0.85 for hexagonal structure when T = 1100 K. This indicates that 2D GaTe will be useful in the field of thermoelectric applications.


First-principles two-dimensional GaTe hexagonal structure monoclinic structure thermoelectric transport properties figure of merit (ZT


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key Research and Development Program of China (No. 2017YFB0405100), the National Natural Science Foundation of China (No. 61675032) and the Open Program of State Key Laboratory of Functional Materials for Informatics. We acknowledge the computational support from the Beijing Computational Science Research Center (CSRC).


  1. 1.
    D.F. Zou, C.B. Yu, Y.H. Li, and Y. Ou, Chin. Phys. Lett. 34, 117202 (2017).CrossRefGoogle Scholar
  2. 2.
    L.E. Bell, Science 321, 1457 (2008).CrossRefGoogle Scholar
  3. 3.
    M.W. Gaultois, T.D. Sparks, C.K. Borg, R. Seshadri, W.D. Bonificio, and D.R. Clarke, Chem. Mater. 25, 2911 (2013).CrossRefGoogle Scholar
  4. 4.
    L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373 (2014).CrossRefGoogle Scholar
  5. 5.
    F.Q. Wang, S. Zhang, J. Yu, and Q. Wang, Nanoscale 7, 15962 (2015).CrossRefGoogle Scholar
  6. 6.
    H.G. Si, Y.X. Wang, Y.L. Yan, and G.B. Zhang, J. Phys. Chem. C 116, 3956 (2012).CrossRefGoogle Scholar
  7. 7.
    X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Appl. Phys. Lett. 93, 193121 (2008).CrossRefGoogle Scholar
  8. 8.
    D. Chung, Science 287, 1024 (2000).CrossRefGoogle Scholar
  9. 9.
    C.H. Ge, H.L. Li, X.L. Zhu, and A.L. Pan, Chin. Phys. B 26, 034208 (2017).CrossRefGoogle Scholar
  10. 10.
    L. Zhang, J. Yu, M. Yang, Q. Xie, H. Peng, and Z. Liu, Nat. Commun. 4, 1443 (2013).CrossRefGoogle Scholar
  11. 11.
    M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, Nat. Commun. 4, 1951 (2013).CrossRefGoogle Scholar
  12. 12.
    N.O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, and X. Duan, Adv. Mater. 24, 5782 (2012).CrossRefGoogle Scholar
  13. 13.
    K. Yan, D. Wu, H. Peng, L. Jin, Q. Fu, X. Bao, and Z. Liu, Nat. Commun. 3, 1280 (2012).CrossRefGoogle Scholar
  14. 14.
    K.X. Chen, X.M. Wang, D.C. Mo, and S.S. Lyu, J. Phys. Chem. C 119, 26706 (2015).CrossRefGoogle Scholar
  15. 15.
    K.X. Chen, S.S. Lyu, X.M. Wang, Y.X. Fu, Y. Heng, and D.C. Mo, J. Phys. Chem. C 121, 13035 (2017).CrossRefGoogle Scholar
  16. 16.
    Q. Wang, X. Li, L. Wu, P. Lu, and Z. Di, Phys. Status Solidi RRL 13, 1800461 (2019).Google Scholar
  17. 17.
    K. Bi, M. Bi, Y. Hao, W. Luo, Z. Cai, X. Wang, and Y. Huang, Nano Energy 51, 513 (2018).CrossRefGoogle Scholar
  18. 18.
    X. Wang, Y. Cui, T. Li, M. Lei, J. Li, and Z. Wei, Adv. Opt. Mater. 7, 1801274 (2019).Google Scholar
  19. 19.
    W.C. Eckhoff, R.S. Putnam, S. Wang, R.F. Curl, and F.K. Tittel, Appl. Phys. B 63, 437 (1996).CrossRefGoogle Scholar
  20. 20.
    M. Hernádez, J. Sánchez, M. Andrés, A. Segura, and V. Muñoz, Opt. Pura Apl. 26, 152 (1993).Google Scholar
  21. 21.
    J. Sánchez-Royo, J. Pellicer-Porres, A. Segura, V. Muñoz-Sanjosé, G. Tobías, P. Ordejón, E. Canadell, and Y. Huttel, Phys. Rev. B 65, 115201 (2002).CrossRefGoogle Scholar
  22. 22.
    H. Yang, L. Geng, Y. Zhang, G. Chang, Z. Zhang, X. Liu, M. Lei, and Y. He, Appl. Surf. Sci. 466, 385 (2019).CrossRefGoogle Scholar
  23. 23.
    H. Wang, R. Liu, Y. Li, X. Lü, Q. Wang, S. Zhao, K. Yuan, Z. Cui, X. Li, S. Xin, R. Zhang, M. Lei, and Z. Lin, Joule 2, 337 (2018).CrossRefGoogle Scholar
  24. 24.
    S. Huang, Y. Tatsumi, X. Ling, H. Guo, Z. Wang, G. Watson, A.A. Puretzky, D.B. Geohegan, J. Kong, and J. Li, ACS Nano 10, 8964 (2016).CrossRefGoogle Scholar
  25. 25.
    Q. Zhao, T. Wang, Y. Miao, F. Ma, Y. Xie, X. Ma, Y. Gu, J. Li, J. He, and B. Chen, Phys. Chem. Chem. Phys. 18, 18719 (2016).CrossRefGoogle Scholar
  26. 26.
    G. Shen, D. Chen, P.-C. Chen, and C.J.A.N. Zhou, ACS Nano 3, 1115 (2009).CrossRefGoogle Scholar
  27. 27.
    E. Finkman and A. Rizzo, Solid State Commun. 15, 1841 (1974).CrossRefGoogle Scholar
  28. 28.
    A. Chevy, A. Kuhn, and M.-S. Martin, J. Cryst. Growth 38, 118 (1977).CrossRefGoogle Scholar
  29. 29.
    J.J. Fonseca, S. Tongay, M. Topsakal, A.R. Chew, A.J. Lin, C. Ko, A.V. Luce, A. Salleo, J. Wu, and O.D. Dubon, Adv. Mater. 28, 6465 (2016).CrossRefGoogle Scholar
  30. 30.
    O. Balitskii, B. Jaeckel, and W. Jaegermann, Phys. Lett. A 372, 3303 (2008).CrossRefGoogle Scholar
  31. 31.
    U.S. Shenoy, U. Gupta, D.S. Narang, D.J. Late, U.V. Waghmare, and C.N.R. Rao, Chem. Phys. Lett. 651, 148 (2016).CrossRefGoogle Scholar
  32. 32.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
  33. 33.
    L. Wu, P. Lu, Y. Li, Y. Sun, J. Wong, and K. Yang, J. Mater. Chem. A 6, 24389 (2018).CrossRefGoogle Scholar
  34. 34.
    J. Zhang, L. Han, Z. Guan, B. Jia, Z. Peng, X. Guan, B. Yan, G.-D. Peng, and P. Lu, J. Lumin. 207, 346 (2019).CrossRefGoogle Scholar
  35. 35.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  36. 36.
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
  37. 37.
    L. Wu, P. Lu, R. Quhe, Q. Wang, C. Yang, P. Guan, and K. Yang, J. Mater. Chem. A 6, 7933 (2018).CrossRefGoogle Scholar
  38. 38.
    G.K. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).CrossRefGoogle Scholar
  39. 39.
    W. Li, J. Carrete, N.A. Katcho, and N. Mingo, Comput. Phys. Commun. 185, 1747 (2014).CrossRefGoogle Scholar
  40. 40.
    T. Pandey, D.S. Parker, and L. Lindsay, Nanotechnology 28, 455706 (2017).CrossRefGoogle Scholar
  41. 41.
    A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008).CrossRefGoogle Scholar
  42. 42.
    A. Shafique and Y.H. Shin, Sci. Rep. 7, 506 (2017).CrossRefGoogle Scholar
  43. 43.
    P. Hu, J. Zhang, M. Yoon, X.-F. Qiao, X. Zhang, W. Feng, P. Tan, W. Zheng, J. Liu, and X. Wang, Nano Res. 7, 694 (2014).CrossRefGoogle Scholar
  44. 44.
    J. He, T. Wang, Q. Zhao, M. Wang, M. Wang, and W. Jie, Synth. Cryst. 43, 3059 (2014).Google Scholar
  45. 45.
    D. Zou, S. Xie, Y. Liu, J. Lin, and J. Li, J. Mater. Chem. A 1, 8888 (2013).CrossRefGoogle Scholar
  46. 46.
    D.J. Singh and I. Mazin, Phys. Rev. B 56, R1650 (1997).CrossRefGoogle Scholar
  47. 47.
    C.R. Leão and V. Lordi, Phys. Rev. B 84, 165206 (2011).CrossRefGoogle Scholar
  48. 48.
    L. Gouskov and A. Gouskov, Phys. Status Solidi B 51, K213 (1979).CrossRefGoogle Scholar
  49. 49.
    B.P. Bahuguna, L.K. Saini, R.O. Sharma, and B. Tiwari, Phys. Chem. Chem. Phys. 20, 28575 (2018).CrossRefGoogle Scholar
  50. 50.
    B. Xu, J. Zhang, G. Yu, S. Ma, Y. Wang, and Y. Wang, J. Appl. Phys. 124, 16 (2018).Google Scholar
  51. 51.
    D.M. Hoat, Philos. Mag. 99, 736 (2018).CrossRefGoogle Scholar
  52. 52.
    S.D. Guo, J. Mater. Chem. C 4, 9366 (2016).CrossRefGoogle Scholar
  53. 53.
    L. Lindsay, D. Broido, and T. Reinecke, Phys. Rev. Lett. 109, 095901 (2012).CrossRefGoogle Scholar
  54. 54.
    B. Peng, D. Zhang, H. Zhang, H. Shao, G. Ni, Y. Zhu, and H. Zhu, Nanoscale 9, 7397 (2017).CrossRefGoogle Scholar
  55. 55.
    L. Yan-Li and Z. Dian-Na, Commun. Theor. Phys. 60, 233 (2013).CrossRefGoogle Scholar
  56. 56.
    D.C. Zhang, A.X. Zhang, S.D. Guo, and Y.F. Duan, RSC Adv. 7, 24537 (2017).CrossRefGoogle Scholar
  57. 57.
    L. Guo, J. Deng, G. Wang, Y. Hao, K. Bi, X. Wang, and Y. Yang, Adv. Funct. Mater. 28, 1804540 (2018).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Information Photonics and Optical CommunicationsBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.School of ScienceBeijing University of Posts and TelecommunicationsBeijingChina
  3. 3.College of Electrical Engineering and Information TechnologySichuan UniversityChengduChina

Personalised recommendations