Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6053–6062 | Cite as

Carrier Transport in the Valence Band of nBn III–V Superlattice Infrared Detectors

  • David R. RhigerEmail author
  • Edward P. Smith
U.S. Workshop on Physics and Chemistry of II-VI Materials 2018
  • 69 Downloads
Part of the following topical collections:
  1. U.S. Workshop on Physics and Chemistry of II-VI Materials 2018

Abstract

Mid-wavelength infrared detectors have been fabricated in the nBn configuration using the InAs/InAsSb superlattice as the absorber. Possible impediments in the valence band can interfere with the transport of holes that represent the signal. We demonstrate that the thermal activation energy of the photocurrent density, as a function of the applied bias voltage, can be a very sensitive probe of the valence band features. We identify and measure two types of impediments, the hole-block due to a band misalignment and the localization sites formed by fluctuations in the superlattice layer thicknesses. The latter are found to dominate the temperature dependence of the hole mobility. Our inferred localization characteristics are consistent with published results obtained by other techniques.

Keywords

III–V superlattice nBn carrier transport mobility localization 

Notes

Conflict of interest

The authors declare they have no conflict of interest.

References

  1. 1.
    A. Rogalski, M. Kopytko, and P. Martyniuk, Antimonide-Based Infrared Detectors A New Perspective (Bellingham: SPIE Press, 2018).CrossRefGoogle Scholar
  2. 2.
    M. Razeghi, A. Haddadi, A. Dehzangi, R. Chevallier, and T. Yang, Proc. SPIE 10177, 1017705 (2017).CrossRefGoogle Scholar
  3. 3.
    P. Martyniuk, M. Kopytko, and A. Rogalski, Opto-Electron. Rev. 22, 127 (2014).Google Scholar
  4. 4.
    D.Z.-Y. Ting, A. Soibel, L. Höglund, J. Nguyen, C.J. Hill, A. Khoshakhlagh, and S.D. Gunapala, Type − II superlattice infrared detectors.Semiconductors and Semimetals, Vol. 84, ed. S.D. Gunapala, D.R. Rhiger, and C. Jagadish (Amsterdam: Elsevier, 2011), pp. 1–57.Google Scholar
  5. 5.
    J.B. Rodriguez, E. Plis, G. Bishop, Y.D. Sharma, H. Kim, L.R. Dawson, and S. Krishna, Appl. Phys. Lett. 91, 043514 (2007).CrossRefGoogle Scholar
  6. 6.
    Y. Lin, D. Wang, D. Donetsky, G. Kipshidze, L. Shterengas, L.E. Vorobjev, and G. Belenky, Semicond. Sci. Technol. 29, 112002 (2014).CrossRefGoogle Scholar
  7. 7.
    D. Zuo, R. Liu, D. Wasserman, J. Mabon, Z.Y. He, S. Liu, Y.H. Zhang, E.A. Kadlec, B.V. Olson, and E.A. Shaner, Appl. Phys. Lett. 106, 071107 (2015).CrossRefGoogle Scholar
  8. 8.
    D.Z. Ting, A. Soibel, L. Hoglund, C.J. Hill, S.A. Keo, A. Fisher, and S.D. Gunapala, J. Electron. Mater. 45, 4680 (2016).CrossRefGoogle Scholar
  9. 9.
    A. Soibel, C.J. Hill, S.A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D.Z. Ting, and S.D. Gunapala, Appl. Phys. Lett. 105, 023512 (2014).CrossRefGoogle Scholar
  10. 10.
    D.Z. Ting, A. Soibel, A. Khoshakhlagh, S.B. Rafol, S.A. Keo, L. Hoglund, A.M. Fisher, E.M. Luong, and S.D. Gunapala, Appl. Phys. Lett. 113, 021101 (2018).CrossRefGoogle Scholar
  11. 11.
    D.Z. Ting, A. Soibel, L. Hoglund, and S.D. Gunapala, J. Electron. Mater. 44, 3036 (2015).CrossRefGoogle Scholar
  12. 12.
    N.D. Akhavan, G. Jolley, G.A. Umana-Membreno, J. Antoszewski, and L. Faraone, IEEE Trans. Electron Dev. 62, 722 (2015).CrossRefGoogle Scholar
  13. 13.
    M. Kopytko, J. Wrobel, K. Jozwikowski, A. Rogalski, J. Antoszewski, N.D. Akhavan, G.A. Umana-Membreno, L. Faraone, and C.R. Becker, J. Electron. Mater. 44, 158 (2015).CrossRefGoogle Scholar
  14. 14.
    M. Koptyko, K. Jozwikowski, P. Martyniuk, W. Gawron, P. Madejczyk, A. Kowalewski, O. Markowska, A. Rogalski, and J. Rutkowski, J. Electron. Mater. 45, 4563 (2016).CrossRefGoogle Scholar
  15. 15.
    E.H. Steenbergen, J.A. Massengale, G. Ariywansa, and Y.H. Zhang, J. Lumin. 178, 451 (2016).CrossRefGoogle Scholar
  16. 16.
    B.V. Olson, J.F. Klem, E.A. Kadlec, J.K. Kim, M.D. Goldflam, S.D. Hawkins, A. Tauke-Pedretti, W.T. Coon, T.R. Fortune, E.A. Shaner, and M.E. Flatte, Phys. Rev. Appl. 7, 024016 (2017).CrossRefGoogle Scholar
  17. 17.
    M.A. Kinch, State-of-the-Art Infrared Detector Technology (SPIE Press, Bellingham, 2014), pp. 44, 58, 134.Google Scholar
  18. 18.
    A.S. Grove, Physics and Technology of Semiconductor Devices (New York: Wiley, 1967), p. 129.Google Scholar
  19. 19.
    D.R. Rhiger, E.P. Smith, B.P. Kolasa, J.K. Kim, J.F. Klem, and S.D. Hawkins, J. Electron. Mater. 45, 4646 (2016).CrossRefGoogle Scholar
  20. 20.
    D.E. Sidor, G.R. Savich, X. Du, and G.W. Wicks, Infrared Phys. Technol. 70, 111 (2015).CrossRefGoogle Scholar
  21. 21.
    S.L. Chuang, Physics of Photonic Devices, 2nd ed. (Hoboken: Wiley, 2009), p. 32.Google Scholar
  22. 22.
    A. Rogalski, A. Jozwikowska, K. Jozwikowski, and J. Rutkowski, Infrared Phys. 33, 463 (1992).CrossRefGoogle Scholar
  23. 23.
    A. Rogalski, Infrared Detectors (Boca Raton: CRC Press, 2011), p. 10.Google Scholar
  24. 24.
    A. Rogalski, K. Adamiec, and J. Rutkowski, Narrow-Gap Semiconductor Photodiodes (SPIE Optical Engineering Press, Bellingham, 2000), pp. 134, 154.Google Scholar
  25. 25.
    P.W. Kruse, Indium antimonide photoconductive and photoelectromagnetic detectors.Semiconductors and Semimetals, Vol. 5, ed. R.K. Willardson and A.C. Beer (New York: Academic Press, 1970), pp. 15–83.Google Scholar
  26. 26.
    Y. Atac, B.V. Olson, J.K. Kim, E.A. Shaner, S.D. Hawkins, J.F. Klem, M.E. Flatte, and T.F. Boggess, J. Appl. Phys. 118, 125701 (2015).CrossRefGoogle Scholar
  27. 27.
    Y. Atac, B.V. Olson, J.K. Kim, E.A. Shaner, S.D. Hawkins, J.F. Klem, M.E. Flatte, and T.F. Boggess, Proc. SPIE 9370, 93700 J (2015).Google Scholar
  28. 28.
    B.V. Olson, E.A. Kadlec, J.K. Kim, J.F. Klem, S.D. Hawkins, and E.A. Shaner, Phys. Rev. Appl. 3, 044010 (2015).CrossRefGoogle Scholar
  29. 29.
    H.J. Hovel, Solar cells.Semiconductors and Semimetals, Vol. 11, ed. R.K. Willardson and A.C. Beer (New York: Academic Press, 1975), Google Scholar
  30. 30.
    N. Yoon, C.J. Reyner, G. Ariyawansa, J.M. Duran, J.E. Scheihing, J. Mabon, and D. Wasserman, J. Appl. Phys. 122, 074503 (2017).CrossRefGoogle Scholar
  31. 31.
    Z.Y. Lin, S. Liu, E.H. Steenbergen, and Y.H. Zhang, Appl. Phys. Lett. 107, 201107 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Raytheon Vision SystemsGoletaUSA

Personalised recommendations