Advertisement

Effect of Silanization on the Magnetic and Microwave Absorption Properties of SrFe12O19 Nanostructure Particles

  • Mostafa Mehdipour
  • Mehdad FathiEmail author
  • Sina Ariae
  • Hooman Shokrollahi
Article
  • 4 Downloads

Abstract

Strontium ferrite nanostructure particles (SrFe12O19), which have a ferrimagnetic nature, were synthesized by a co-precipitation process of chloride salts using a sodium hydroxide solution. The resulting precursors were heat-treated in a furnace at 1100°C for 4 h. After cooling in the furnace, the nanostructure particles were silanized using 3-methacryloxypropyltrimethoxy silane molecules. After applying the silane pretreatment to the surface of the nanoparticles, we studied the effects of the most influential silanizing parameters, including the silane concentration and hydrolyzing time, on the magnetic and microwave absorption properties of the samples. The hysteresis loops showed an optimum saturation magnetization of 0.065T for 1 h hydrolyzing time at 1.25 wt.% silane concentration; however, no change was detected in the coercivity by varying the two factors. The powders with optimum magnetic properties were used to manufacture the samples in order to study the microwave absorption properties. Employing silanized nanostructures resulted in a significant increase in the reflection loss (at the resonance frequency) from − 16 dB up to − 72 dB.

Keywords

Magnetic materials nanostructures organic compounds magnetic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    S.E. Jacobo, P.G. Bercoff, C.A. Herme, and L.A. Vives, Mater. Chem. Phys. 157, 124 (2015).CrossRefGoogle Scholar
  2. 2.
    R. Sharma, V. Singh, R.K. Kotnala, and R.P. Tandon, Mater. Chem. Phys. 160, 447 (2015).CrossRefGoogle Scholar
  3. 3.
    Z. Durmus, H. Kavas, A. Durmus, and B. Aktaş, Mater. Chem. Phys. 163, 439 (2015).CrossRefGoogle Scholar
  4. 4.
    P. Xu, X. Han, H. Zhao, Z. Liang, and J. Wang, Mater. Lett. 62, 1305 (2008).CrossRefGoogle Scholar
  5. 5.
    A.R. Farhadizadeh, S.A. SeyyedEbrahimi, and S.M. Masoudpanah, J. Magn. Magn. Mater. 382, 233 (2015).CrossRefGoogle Scholar
  6. 6.
    N.A. Sapoletova, S.E. Kushnir, Y.H. Li, S.Y. An, Jw Seo, and K. HeonHur, J. Magn. Magn. Mater. 389, 101 (2015).CrossRefGoogle Scholar
  7. 7.
    A. Singh, V. Singh, and K.K. Bamzai, Mater. Chem. Phys. 155, 92 (2015).CrossRefGoogle Scholar
  8. 8.
    G. Vaisman, E.O. Kamenetskii, and R. Shavit, J. Phys. D Appl. Phys. 48, 115003 (2015).CrossRefGoogle Scholar
  9. 9.
    M. Gama, C. Rezende, and C. Dantas, J. Magn. Magn. Mater. 19, 9 (2011).Google Scholar
  10. 10.
    L. Chen, Y. Duan, L. Liu, J. Guo, and S. Liu, Mater. Des. 21, 2 (2011).Google Scholar
  11. 11.
    F. Qin and C. Brosseay, J. Appl. Phys. 14, 19 (2012).Google Scholar
  12. 12.
    X.C. Tong, Advanced Materials and Design for Electromagnetic Interference Shielding (Boca Raton: CRC Press, 2009).Google Scholar
  13. 13.
    P. Liu, Z. Yao, and J. Zhou, J. RSC Adv. 5, 93739–93748 (2015).CrossRefGoogle Scholar
  14. 14.
    Y.J. Wan, L.X. Gong, L.C. Tang, L.B. Wu, and J.X. Jiang, Compos. Part A Appl. Sci. Manuf 64, 79 (2014).CrossRefGoogle Scholar
  15. 15.
    H. Chen, J. Zheng, L. Qiao, Y. Ying, L. Jiang, and S.L. Che, Adv. Powder Technol. 26, 618 (2015).CrossRefGoogle Scholar
  16. 16.
    C.Y. Lee, J.H. Bae, T.Y. Kim, S.H. Chang, and S.Y. Kim, Compos. Part A Appl. Sci. Manuf. 75, 11 (2015).CrossRefGoogle Scholar
  17. 17.
    J. Comyn, Handb. Adhes. Sealants 2, 1 (2006).CrossRefGoogle Scholar
  18. 18.
    A.H. Taghvaei, H. Shokrollahi, A. Ebrahimi, and K. Janghorban, Mater. Chem. Phys. 116, 247 (2009).CrossRefGoogle Scholar
  19. 19.
    C.R. Vistas, A.C.P. Águas, and G.N.M. Ferreira, Appl. Surf. Sci. 286, 314 (2013).CrossRefGoogle Scholar
  20. 20.
    B.D. Benito, F. Velasco, and M. Pantoja, Prog. Org. Coat. 70, 287 (2011).CrossRefGoogle Scholar
  21. 21.
    J. Renato, C. Queiroz, P. Benetti, M. Özcan, L. Fernando, C. Oliveira, A.D. Bona, F.E. Takahashi, and M.A. Bottino, Dent. Mater. 28, 189 (2012).CrossRefGoogle Scholar
  22. 22.
    M.L. Abel, R.D. Allington, R.P. Digby, N. Porritt, S.J. Shaw, and J.F. Watts, Int. J. Adhes. Adhes. 26, 2 (2006).CrossRefGoogle Scholar
  23. 23.
    S. Tyagi, V. Agarwala, and T. Shami, J. Elec. Mater. 40, 2004 (2011).CrossRefGoogle Scholar
  24. 24.
    B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction, 3rd ed. (Upper Saddle River: Prentice-Hall Inc, 2001).Google Scholar
  25. 25.
    M. Yamaura, R.L. Camilo, L.C. Sampaio, M.A. Macêdo, M. Nakamura, and H.E. Toma, J. Magn. Magn. Mater. 279, 210 (2004).CrossRefGoogle Scholar
  26. 26.
    W.S. Kim and J.J. Lee, J. Adhes. Sci. Technol. 21, 125 (2007).CrossRefGoogle Scholar
  27. 27.
    M. Mohseni, M. Mirabedini, M. Hashemi, and G.E. Thompson, Prog. Org. Coat. 57, 307 (2006).CrossRefGoogle Scholar
  28. 28.
    B. Chico, D. Fuente, M. Pe´rez, and M. Morcillo, J. Coat. Technol. Res. 9, 3 (2012).CrossRefGoogle Scholar
  29. 29.
    J.P. Matinlinna, M. Ozcan, L.V.J. Lassila, and P.K. Vallittu, Dent. Mater. 20, 804 (2004).CrossRefGoogle Scholar
  30. 30.
    E.M. Petrie, Handbook of Adhesives and Sealants (New York: McGraw-Hill, 2000).Google Scholar
  31. 31.
    P. Wagner, R. Ray, K. Hart, and W. Bradley, Mater. Eng. 20, 38 (1987).Google Scholar
  32. 32.
    W.D. Bascom, ASM Engineered Materials Handbook (Russell Township: ASM International, 1990).Google Scholar
  33. 33.
    R.C.O. Handley, A Wiley Intersci. Publ. 11, 41 (2000).Google Scholar
  34. 34.
    R. Ramprasad, P. Zurcher, M. Petras, and M. Miller, J. Appl. Phys. 2, 14 (2004).Google Scholar
  35. 35.
    Z. Liu, D. Zeng, R. Ramanujan, X. Zhong, and H. Davies, Am. Inst. Phys. 12, 51 (2009).Google Scholar
  36. 36.
    E. Hosseinkhani, M. Mehdipour, and H. Shokrollahi, J. Elec. Mater. 3, 18 (2013).Google Scholar
  37. 37.
    Z. Ma, Y. Zhang, Ch Tao, J. Yuan, Q. Liu, and J. Wang, Phys. B 14, 25 (2011).Google Scholar
  38. 38.
    R. Soohoo, Theory and Application of Ferrites, Vol. 2 (Upper Saddle River: Prentice-Hall, 1960), p. 41.Google Scholar
  39. 39.
    S. Vonsovlii, eds., Ferromagnetic Resonance (Oxford: Pergamon Press Ltd, 1966).Google Scholar
  40. 40.
    M. Hurben, D. Franklin, and C. Patton, Am. Inst. Phys. 16, 23 (1997).Google Scholar
  41. 41.
    A. Gurevich and G. Melkov, Magnetization Oscillation and Waves (Boca Raton: CRC Press Inc, 1996).Google Scholar
  42. 42.
    M. Hurben and C. Patton, Am. Inst. Phys. 1, 5 (1998).Google Scholar
  43. 43.
    R. Ramprasad, P. Zurcher, M. Petras, and M. Miller, Am. Inst. Phys. 11, 14 (2004).Google Scholar
  44. 44.
    M. Mehdipour and H. Shokrollahi, J. Appl. Phys. 19, 12 (2004).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Magnetic Materials Research Lab, Department of Materials Engineering, Faculty of Mechanical EngineeringUniversity of TabrizTabrizIran
  2. 2.Department of Science and EnvironmentUniversity of RoskildeCopenhagenDenmark
  3. 3.Electroceramics Group, Materials Science and Engineering DepartmentShiraz University of TechnologyShirazIran

Personalised recommendations