Dissolution Rate of Electronics Packaging Surface Finish Elements in Sn3.0Ag0.5Cu Solder

  • Dave Hillman
  • Ross WilcoxonEmail author
  • Tim Pearson
  • Paul McKenna


A clear understanding of the characteristics of solder wetting to component terminations is critical for establishing thermal process profiles that ensure acceptable solder joint integrity. For example, component gold plating thickness as well as the soldering process temperature and time must be carefully controlled to prevent embrittlement by the gold/tin intermetallic compound. The electronics industry has successfully applied the results published in 1969 by W.G. Bader to relate process temperature and time to surface finish dissolution rates in defining acceptable soldering process profiles for tin/lead surface finishes. To date, there is no single comprehensive data set for these materials that is comparable to the Bader work. To address this need, solder dissolution experiments modeled on the Bader work were conducted using Sn3.0Ag0.5Cu (SAC305) solder with gold, silver, palladium, platinum, copper and nickel samples. In these experiments, samples were immersed in a solder pot, and the resulting material dissolution was determined for different solder temperatures and immersion times. This paper describes the test approach for measuring the solder dissolution of these materials and tabulates dissolution rates suitable for optimizing soldering process profiles for electronic assemblies. The dissolution rates of the surface finish materials were found to typically be about 50% higher for the lead-free SAC305 solder than tin–lead solder.


Lead-free solder dissolution rate arrhenius equation 



Frequency factor




Measured cross-sectional area of wire sample






90% CI for a parameter X determined with regression analysis


Activation energy (kJ/mol)


Electroless nickel/electroless palladium/immersion gold


Inductively coupled plasma


Intermetallic compound


Joint standard published by the Association Connecting Electronics Industries


Number of data points used in a regression analysis




Optical emission spectroscopy








Effective radius of wire sample


Universal Gas Constant (8.314 J/kg K)


Correlation coefficient for regression analysis results


Restriction of hazardous substances directive


Solder alloySn3.0Ag0.5Cu


Scanning electron microscopy




Solder alloySn0.70.05Ni0.009Ge


Solder alloySn60Pb40






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    W.G. Bader, Welding Research Supplement, December 1969, p. 551s.Google Scholar
  2. 2.
    M. Bester, InterNEPCON Proceedings, 1968, p. 211.Google Scholar
  3. 3.
    F.G. Foster, ASTM Special Technical Publications, No. 319, 1962.Google Scholar
  4. 4.
    S.D. Ebneter, NASA Technical Memorandum X-53335, Oct. 1965.Google Scholar
  5. 5.
    P. Vianco, Soldering Handbook, American Welding Society, ISBN 0-87171-618-6, p. 182.Google Scholar
  6. 6.
    K. Puttliz and K. Stalter, Handbook of Lead-free Solder Technology for Microelectronics Assemblies, Marcel Decker Inc., ISBN 0-8247-4870-0, p. 475.Google Scholar
  7. 7.
    R.J. Klein Wassink, Soldering in Electronics, Electrochemical Publications Limited, ISBN 0-901150-14-2, p. 107.Google Scholar
  8. 8.
    C. Lea, A Scientific Guide to Surface Mount Technology, Electrochemical Publications Limited, ISBN 0-901150-22-3, p. 107.Google Scholar
  9. 9.
    S. O. Duford, Z. Primavera, and M. Meilunas, IPC Annual Meeting, 2002, p. S08-4 1.Google Scholar
  10. 10.
    D. Hillman, M. Wells, and K. Cho, CMAP Conference Proceedings, 2005.Google Scholar
  11. 11.
    D. Hillman, J. Soole, and R. Wilcoxon, SMTA Int Conf on Soldering and Reliability (ICSR), May, 2008.Google Scholar
  12. 12.
    Texas Instrument Technical Report # SZZA002, April, 1998.Google Scholar
  13. 13.
    Texas Instrument Technical Report # SZZA004, April, 1998.Google Scholar
  14. 14.
    D. Finley, U. Ray, I. Artaki, P. Vianco, S. Shaw, A. Reyes, and M. Haq, Proc. of the 1995 SMI Tech Prog, 1995, p. 941.Google Scholar
  15. 15.
    R. Pratt, E. Stromweld, and C. Quesnel, Sandia Report SAND93-7104, September, 1993.Google Scholar
  16. 16.
    M. Wolverton, IPC APEX EXPO Conf. Proc., 2014.Google Scholar
  17. 17.
    P. Tegehall, IVF Project Report 06/07, March, 2006.Google Scholar
  18. 18.
    Y. Chen, K. Huang, and H. Chen, Advanced Packaging Materials (APM), 2013 IEEE Int Symp, p. 102.Google Scholar
  19. 19.
    Z. Mei and A. Eslambolchi, SMTAI Conf. Proc., Paper 3C14, 1998.Google Scholar
  20. 20.
    B. Gumpert, W. Fox, and C.D. Dupriest, SMTAI Conf. Proc., Paper SUB4.2, 2017.Google Scholar
  21. 21.
    M. Wolverton, SMTAI Conf. Proc., 2011, pp. 960.Google Scholar
  22. 22.
    L. Garner, S. Sane, D. Suh, T. Byrne, A. Dani, T. Martin, M. Mello, M. Patel, and R. Williams, Intel Tech J, Vol. 9, Issue 4, 2005, ISSN 1535-864X, pp. 297.Google Scholar
  23. 23.
    J. Kennedy, D. Hillman, and R. Wilcoxon, 2013 SMTA Int. Conf. on Soldering and Reliability Proc., Toronto Canada.Google Scholar
  24. 24. (Accessed March 14, 2018)
  25. 25.
    J.S. Milton and J.C. Arnold, Probability and Statistics in the Engineering and Computer Sciences (McGraw-Hill, 1986), pp. 350.Google Scholar
  26. 26.
    H. Berg and E.L. Hall, 11th IEEE Reliability Physics Symposium, Las Vegas, NV, USA, 1973, pp. 10.
  27. 27.
    H. Heinzel and K.E. Saeger, Gold Bull 9, 7 (1976). Scholar
  28. 28.
    R.A. Bulwith and C.A. MacKay, Welding Research Supplement, March, 1985, p. 86.Google Scholar
  29. 29.
    I.E. Anderson, Lead-free Electronic Solders, Springer, ISBN 0-387-48431-0, 2007, p. 55.Google Scholar
  30. 30.
    G.Y. Li and Y.C. Chan, Materials Science and Engineering: B, Volume 57, Issue 2, 1999, ISSN 0921-5107, pp. 116.
  31. 31.
    P. Snugovsky, Z. Bagheri, and C. Hamilton, C. J. Electer. Mater. 38, 2628 (2009). Scholar
  32. 32.
    G. Izuta, T. Tanabe, and K. Suganuma, Soldering & Surface Mount Tech. (2007),
  33. 33.
    S.C. Yang, W.C. Chang, Y.W. Wang, and C.R. Kao, Journal of Elec Materials 38, 25 (2009).CrossRefGoogle Scholar
  34. 34.
    T.M. Korhonen, P. Su, and S.J. Hong, J. Electer. Mater. 29, 1194 (2000).CrossRefGoogle Scholar
  35. 35.
    P.T. Vianco, J.A. Rejent, G.L. Zender, and P.F. Hlava, Metall. Mat. Trans. A 41, 3042 (2010). Scholar
  36. 36.
    P. Vianco, J. Rejent, G. Zender, and P. Hlava, Metall. Mat. Trans. A 41, 3053 (2010). Scholar
  37. 37.
    T.H. Kim and Y.H. Kim, YH. JOM 56, 45 (2004). Scholar
  38. 38.
    L. Snugovsky, M.A. Ruggiero, D.D. Perovic and J.W. Rutter, Mat. Sci. and Tech. (2003).

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Collins AerospaceCedar RapidsUSA

Personalised recommendations