Advertisement

HgCdTe Diode Dark Current Modeling: Rule 07 Revisited for LW and VLW

  • N. Baier
  • O. GravrandEmail author
  • C. Lobre
  • O. Boulade
  • A. Kerlain
  • N. Péré-Laperne
Article
  • 4 Downloads

Abstract

Rule 07 is very convenient for dark current estimation of high-quality HgCdTe P-on-n photodiodes used in focal-plane arrays for science imaging, in which the diode behavior is dominated by the n-type absorption layer. Its popularity is partly due to the fact that it is very easy to use, while giving an accurate description of the evolution of the dark current with both temperature and cutoff. This modeling is actually the result of an empirical fit to experimental data from Teledyne Imaging Systems (TIS), short-wave infrared (SWIR) data between 300 K and 160 K, middle-wave infrared (MWIR) data around 80 K, and long-wave infrared (LWIR) data above liquid-nitrogen temperature (78 K). P-on-n diodes processed at CEA-LETI and SOFRADIR also follow this rule at high temperature and low cutoffs. However, at higher cutoffs (LWIR and very LWIR) and temperatures below 78 K, the measured dark current deviates from this rule. Indeed, in this wavelength range, the observed activation energy tends to be lower than the value given by Rule 07, closer to the semiconductor gap, which is more physically meaningful. This effect is also consistent with TIS data taken for the first characterizations of LWIR diodes for NEOCam at low temperatures. In this communication, the measured dataset is first presented and then discussed. Then, a new empirical rule describing the dark current of P-on-n HgCdTe diodes is proposed. This relation seems more suitable for this kind of wavelength and temperature (LWIR and VLWIR below 79 K) than the well-known Rule 07. Hence, Rule 07 represents a rough overestimation of the dark current for this range of wavelengths. The new expression should describe the low-temperature dark current in the LWIR and VLWIR regions more accurately.

Keywords

IR sensors HgCdTe P-on-n photodiodes dark current IR space applications very long-wavelength IR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to thank the French Centre National d’Etudes Spatiales (CNES), LabEx FOCUS (ANR-11-LABX-0013), and the European Space Agency for their support of some parts of this work.

References

  1. 1.
    W.E. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, J. Electron. Mater. 37, 1406 (2008).  https://doi.org/10.1007/s11664-008-0426-3.CrossRefGoogle Scholar
  2. 2.
    W.E. Tennant, J. Electron. Mater. 37, 1030 (2010).  https://doi.org/10.1007/s11664-010-1084-9.CrossRefGoogle Scholar
  3. 3.
    O. Gravrand, L. Mollard, C. Largeron, N. Baier, E. DeBorniol, and P. Chorier, J. Electron. Mater. 38, 1733 (2009).  https://doi.org/10.1007/s11664-009-0795-2.CrossRefGoogle Scholar
  4. 4.
    V. Destefanis and A. Kerlain, J. Electron. Mater. 45, 4511 (2016).  https://doi.org/10.1007/s11664-016-4535-0.CrossRefGoogle Scholar
  5. 5.
    N. Baier, C. Cervera, O. Gravrand, L. Mollard, C. Lobre, G. Destefanis, G. Bourgeois, J.P. Zanatta, O. Boulade, and V. Moreau, J. Electron. Mater. 44, 3144 (2015).  https://doi.org/10.1007/s11664-015-3851-0.CrossRefGoogle Scholar
  6. 6.
    C. Fulk, W. Radford, D. Buell, J. Bangs, and K. Rybnicek, J. Electron. Mater. 44, 2977 (2015).  https://doi.org/10.1007/s11664-015-3740-6.CrossRefGoogle Scholar
  7. 7.
    A. Kerlain, A. Brunner, D. Sam-Giao, N. Pére-Laperne, L. Rubaldo, V. Destefanis, F. Rochette, and C. Cervera, J. Electron. Mater. 45, 4557 (2016).  https://doi.org/10.1007/s11664-016-4506-5.CrossRefGoogle Scholar
  8. 8.
    D. Eich, W. Schirmacher, S. Hanna, K.M. Mahlein, P. Fries, and H. Figgemeier, J. Electron. Mater. 46, 5448 (2017).  https://doi.org/10.1007/s11664-017-5596-4.CrossRefGoogle Scholar
  9. 9.
    P. C. Klipstein, E. Avnon, D. Azulai, Y. Benny, R. Fraenkel, A. Glozman, E. Hojman, O. Klin, L. Krasovitsky, L. Langof, I. Lukomsky, M. Nitzani, I. Shtrichman, N. Rappaport, N. Snapi, E. Weiss, A. Tuito, Proc. SPIE 98190T (2016).  https://doi.org/10.1117/12.2222776.
  10. 10.
    A. Rogalski, M. Kopytko, P. Martyniuk, Proc. SPIE 1017715 (2017).  https://doi.org/10.1117/12.2272817.
  11. 11.
    F. Callewaert, A.M. Hoang, and M. Razeghi, Appl. Phys. Lett. 104, 053508 (2014).  https://doi.org/10.1063/1.4864403.CrossRefGoogle Scholar
  12. 12.
    G.L. Hansen, J.L. Schmit, and T.N. Casselman, J. Appl. Phys. 53, 7099 (1982).  https://doi.org/10.1063/1.330018.CrossRefGoogle Scholar
  13. 13.
    N. Baier, L. Mollard, J. Rothman, G. Destéfanis, P. Ballet, G. Bourgeois, J. P. Zanatta, M. Tchagaspanian, S. Courtas, P. Fougères, C. Pautet, P. Pidancier, L. Rubaldo, Proc. SPIE 729823 (2009).  https://doi.org/10.1117/12.820343.
  14. 14.
    L. Mollard, G. Destefanis, J. Rothman, N. Baier, S. Bisotto, P. Ballet, J. P. Chamonal, P. Castelein, J. P. Zanatta, M. Tchagaspanian, A. M. Papon, J. P. Barnes, F. Henry, S. Gout, G. Bourgeois, C. Pautet, P. Fougères, Proc. SPIE 69400F (2008).  https://doi.org/10.1117/12.780582.
  15. 15.
    L. Mollard, G. Destefanis, G. Bourgeois, A. Ferron, N. Baier, O. Gravrand, J.P. Barnes, A.M. Papon, F. Milesi, A. Kerlain, and L. Rubaldo, J. Electron. Mater. 40, 1830 (2011).  https://doi.org/10.1007/s11664-011-1692-z.CrossRefGoogle Scholar
  16. 16.
    J. Rothman, J. Meilhan, G. Perrais, J.P. Belle, and O. Gravrand, J. Electron. Mater. 35, 1174 (2006).  https://doi.org/10.1007/s11664-006-0238-2.CrossRefGoogle Scholar
  17. 17.
    N. Péré-Laperne, R. Taalat, J. Berthoz, L. Rubaldo, E. Carrère, L. Dargent, A. Kerlain, Proc. SPIE 99330H (2016).  https://doi.org/10.1117/12.2241440.
  18. 18.
    L. Puig, K. G. Isaak, I. Escudero, D. Martin, P.-E. Crouzet, N. Rando, Proc. SPIE 81460 V (2011).  https://doi.org/10.1117/12.899533.
  19. 19.
    L. Puig, G. L. Pilbratt, A. Heske, I. Escudero Sanz, P.-E. Crouzet, Proc. SPIE 99041 W (2016).  https://doi.org/10.1117/12.2230964.
  20. 20.
    O. Gravrand, E. Borniol, S. Bisotto, L. Mollard, and G. Destefanis, J. Electron. Mater. 36, 981 (2007).  https://doi.org/10.1007/s11664-007-0151-3.CrossRefGoogle Scholar
  21. 21.
    P. Pidancier, A. Delannoy, K. Madet, P. Chorier, N. Remoué, T. Dartois, Proc. SPIE 105631 V (2014).  https://doi.org/10.1117/12.2304217.
  22. 22.
    N. Baier, L. Mollard, O. Gravrand, G. Bourgeois, J.-P. Zanatta, G. Destefanis, O. Boulade, V. Moreau, F. Pinsard, L. Tauziède, A. Bardoux, L. Rubaldo, A. Kerlain, J.-C. Peyrard, Proc. SPIE 87042P-1 (2013).  https://doi.org/10.1117/12.2016369.
  23. 23.
    P. Castelein, N. Baier, O. Gravrand, L. Mollard, D. Brellier, F. Rochette, A. Kerlain, L. Rubaldo, Y. Reibel, G. Destefanis, Proc. SPIE 90702Y (2014).  https://doi.org/10.1117/12.2054023.
  24. 24.
    O. Gravrand, J. Rothman, C. Cervera, N. Baier, C. Lobre, J.P. Zanatta, and B. Fieque, J. Electron. Mater. 45, 4532 (2016).  https://doi.org/10.1007/s11664-016-4516-3.CrossRefGoogle Scholar
  25. 25.
    C. McMurtry, D. Lee, J. Beletic, C.A. Chen, R.T. Demers, M. Dorn, D. Edwall, C. Bacon Fazar, W.J. Forrest, F. Liu, A.K. Mainzer, J.L. Pipher, and A. Yulius, Opt. Eng. 52, 091804 (2013).  https://doi.org/10.1117/1.OE.52.9.091804.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.CEA-LETI, MINATECGrenobleFrance
  2. 2.CEA-IRFUGif-sur-YvetteFrance
  3. 3.SOFRADIRPalaiseauFrance

Personalised recommendations