Effects of Mg Doping on Microstructure and Dielectric and Ferroelectric Properties of Lead-Free NaBiTi6O14 Ceramics

  • Zhentao Wu
  • Lu Qin
  • Kanghui Liu
  • Qian Luo
  • Chaobin Jiang
  • Yong ChenEmail author
  • Wanqiang CaoEmail author
  • Xunzhong ShangEmail author


The influence of Mg doping on a type of Na0.5Bi0.5TiO3 (NBT)-based ceramic, viz. NaBiTi6O14, has been investigated. NaBi(Ti1−xMgx)6Oy ceramics (x = 0.03, 0.06, 0.09, 0.12) were prepared by a traditional solid-phase method, and the influence of Mg doping on their microstructure, dielectric properties, and ferroelectric performance studied. Scanning electron microscopy (SEM) showed that the doped ceramics had clearer grain boundaries and more uniform grain size than the undoped ceramic. Mg doping enhanced the dielectric properties of the NaBiTi6O14 ceramic, with lower dielectric loss and higher dielectric constant. Z* plots showed that the NaBi(Ti1−xMgx)6Oy ceramics were a kind of dielectric. The activation energy of the ceramics was found to be 1.083 eV, 1.087 eV, 1.086 eV, and 0.861 eV, respectively, confirming their excellent dielectric performance. Ferroelectric hysteresis measurements showed that the NaBi(Ti1−xMgx)6O14−6x ceramics exhibited weak ferroelectric performance with 2Pr values of 0.079 μC cm−2 to 0.195 μC cm−2. The stable behavior of the doped ceramics may enable their application in high-temperature and high-frequency devices.


NaBiTi6O14 relative permittivity dielectric loss activation energy ferroelectric properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors wish to thank the China Scholarship Council (CSC) for support as an academic visitor to join Derek C. Sinclair’s research group at the Department of Materials Science and Engineering, University of Sheffield. We thank The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology for funding (Grant No. ZR201802). We also thank the Natural Science Foundation of Hubei Province, China for funding (Grant No. 2017CFB574).


  1. 1.
    G. Ajai and T.C. Goel, Mater. Sci. Eng. B 60, 128 (1999).CrossRefGoogle Scholar
  2. 2.
    H.Q. Fan and H.E. Kim, J. Am. Ceram. Soc. 84, 636 (2001).CrossRefGoogle Scholar
  3. 3.
    C.C. Wei, J. Phys. C Solid State Phys. 16, 2803 (1983).CrossRefGoogle Scholar
  4. 4.
    G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, and N.N. Krainik, Sov. Phys. Solid State 2, 2651 (1961).Google Scholar
  5. 5.
    J.F. Li, K. Wang, and B.P. Zhang, J. Am. Ceram. Soc. 89, 706 (2006).CrossRefGoogle Scholar
  6. 6.
    Y.P. Guo, K.I. Kakimoto, and H. Ohsato, Solid State Commun. 129, 279 (2004).CrossRefGoogle Scholar
  7. 7.
    T. Takenaka, K.I. Maruyama, and K. Sakata, Jpn. J. Appl. Phys. 30.9B, 2236 (1991).CrossRefGoogle Scholar
  8. 8.
    M. Li, M.J. Pietrowski, R.A.D. Souza, H. Zhang, I.M. Reaney, and S.N. Cook, Nat. Mater. 13, 31 (2014).CrossRefGoogle Scholar
  9. 9.
    B. Aurivillius, Ark Kemi. 1, 463 (1949).Google Scholar
  10. 10.
    C.C. Zhang, J.X. Zou, L.H. Li, Q. Luo, and C. Ma, Ceram. Int. 13963, 43 (2017).Google Scholar
  11. 11.
    Y. Chen, C.C. Zhang, and J.X. Zou, J. Alloys Compd. 718, 335 (2017).CrossRefGoogle Scholar
  12. 12.
    Y. Chen, Q. Chen, L. Qin, C.B. Jiang, Q. Luo, C.C. Zhang, W.Q. Cao, R.K. Pan, and W. Wang, Ceram. Int. 10021, 44 (2018).Google Scholar
  13. 13.
    Y.L. Jiang, X.P. Jiang, C. Chen, Y.J. Chen, X. Jiang, and N. Tu, Ceram. Int. 43, 6446 (2017).CrossRefGoogle Scholar
  14. 14.
    H.Q. Fan and H.E. Kim, J. Appl. Phys. 91, 317 (2002).CrossRefGoogle Scholar
  15. 15.
    M. Li, D.C. Sinclair, and A.R. West, J. Appl. Phys. 323, 109 (2011).Google Scholar
  16. 16.
    X.P. Jiang, X.L. Fu, C. Chen, N. Tu, M.Z. Xu, X.H. Li, H. Shao, and Y.J. Chen, J. Adv. Ceram. 54, 4 (2015).Google Scholar
  17. 17.
    J.G. Wu, Appl. Phys. Lett. 91.13, 115 (2007).Google Scholar
  18. 18.
    J.D. Zang, M. Li, D.C. Sinclair, and J. Rodel, J. Am. Ceram. Soc. 97.5, 1523 (2014).CrossRefGoogle Scholar
  19. 19.
    C.M. Wang, L. Zhao, J.F. Wang, S. Zhang, and T.R. Shrout, Phys. Status Solidi (RRL) 3, 7 (2009).CrossRefGoogle Scholar
  20. 20.
    F. Rehman, J.B. Li, Y.K. Dou, J.S. Zhao, M. Rizwan, S. Khalid, and H.B. Jin, J. Alloys Compd. 315, 654 (2015).Google Scholar
  21. 21.
    X.P. Jiang, Q. Yang, S.L. Zhou, C. Chen, Y. Chen, and N. Tu, J. Am. Ceram. Soc. 94, 1109 (2011).CrossRefGoogle Scholar
  22. 22.
    W. Lei, Y.Y. Yan, X.H. Wang, W. Lu, Z.B. Yang, and W.Z. Lu, Ceram. Int. 41, 521 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Key Laboratory of Ferro and Piezoelectric Materials and Devices of Hubei Province, School of Physics and Electronic ScienceHubei UniversityWuhanPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringHubei UniversityWuhanPeople’s Republic of China

Personalised recommendations