Effect of ZnO Intermediate Layer Thickness on Performance of Cu2ZnSnS4 Solar Cells

  • Bin Liu
  • Jie GuoEmail author
  • Ruiting HaoEmail author
  • Xinxing Liu
  • Lu Wang
  • Kang Gu
  • Yong Li
  • Shuaihui Sun


Cu2ZnSnS4 (CZTS) thin films were sputtered on Mo/glass substrates using Cu, Sn and ZnS targets and sulfurized at 570°C. The effect of a ZnO intermediate layer between CZTS and Mo on the microstructure, morphology and photovoltaic properties was investigated. Three samples with different ZnO thickness, named as S1 (10 nm), S2 (50 nm) and S3 (211 nm), had the identical composition ratio of Cu/(Zn + Sn) = 0.67 and Zn/Sn = 1.05 for kesterite structure. No obvious secondary phase such as SnS, SnS2 and ZnS was found. XRD showed no ZnO peak which indicated that the ZnO layer was completely sulfurized and converted to ZnS and CZTS. The ZnO intermediate layer significantly inhibited the formation of MoS2 and the decomposition of CZTS. A porous interlayer with many voids appeared at CZTS/Mo in S1 and S2 which originated from two different formations of CZTS and resulted in the inferior properties. The efficiency of CZTS solar cells without ZnO was only 2.7%, obviously below that of the three samples with ZnO. The Voc and Jsc of S3 was 625 mV and 12.6 mA cm−2 respectively, which resulted in the highest efficiency of 4.16% in three samples. The results in S3 illustrate that the ZnS layer was substituted completely by ZnO which can effectively improve CZTS/Mo contact and the photovoltaic properties.


Cu2ZnSnS4 ZnO intermediate layer porous interlayer composition ratios secondary phases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was supported by the National Natural Science Foundation of China (Nos. 61774130, 11474248, 61176127, 61006085), the Key Program for International S&T cooperation Projects of China (No. 2011DFA62380), and the Ph.D. Programs Foundation of Ministry of Education of China (No. 20105303120002).


  1. 1.
    M. Suryawanshi, G. Agawane, S. Bhosale, S. Shin, P. Patil, J. Kim, and A. Moholkar, Mater. Technol. 28, 98 (2013).CrossRefGoogle Scholar
  2. 2.
    H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, and T. Yokota, Sol. Energy Mater. Sol. Cells 49, 407 (1997).CrossRefGoogle Scholar
  3. 3.
    C. Yan, J. Huang, K. Sun, S. Johnston, Y. Zhang, H. Sun, A. Pu, M. He, F. Liu, K. Eder, L. Yang, J.M. Cairney, N.J. Ekins-Daukes, Z. Hameiri, J.A. Stride, S. Chen, M.A. Green, and X. Hao, Nat. Energy 3, 764 (2018).CrossRefGoogle Scholar
  4. 4.
    B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, and S. Guha, Prog Photovoltaics 21, 72 (2013).CrossRefGoogle Scholar
  5. 5.
    B. Shin, Y. Zhu, N.A. Bojarczuk, S.J. Chey, and S. Guha, Appl. Phys. Lett. 101, 053903 (2012).CrossRefGoogle Scholar
  6. 6.
    W. Li, J. Chen, H. Cui, F. Liu, and X. Hao, Mater. Lett. 130, 87 (2014).CrossRefGoogle Scholar
  7. 7.
    J.J. Scragg, T. Kubart, J.T. Wätjen, T. Ericson, M.K. Linnarsson, and C. Platzer-Björkman, Chem. Mater. 25, 3162 (2013).CrossRefGoogle Scholar
  8. 8.
    F. Liu, K. Sun, W. Li, C. An, H. Cui, L. Jiang, X. Hao, and M.A. Green, Appl. Phys. Lett. 104, 051105 (2014).CrossRefGoogle Scholar
  9. 9.
    S. López-Marino, M. Placidi, A. Pérez-Tomás, J. Llobet, V. Izquierdo-Roca, X. Fontané, A. Fairbrother, M. Espíndola-Rodríguez, D. Sylla, A. Pérez-Rodríguez, and E. Saucedo, J. Mater. Chem. A 1, 8338 (2013).CrossRefGoogle Scholar
  10. 10.
    J. Li, Y. Zhang, H. Wang, L. Wu, J. Wang, W. Liu, Z. Zhou, Q. He, and Y. Sun, Sol. Energy Mater. Sol. Cells 132, 363 (2015).CrossRefGoogle Scholar
  11. 11.
    G. Ma, T. Minegishi, D. Yokoyama, J. Kubota, and K. Domen, Chem. Phys. Lett. 501, 619 (2011).CrossRefGoogle Scholar
  12. 12.
    S. Siebentritt and S. Schorr, Prog Photovolt. 20, 512 (2012).CrossRefGoogle Scholar
  13. 13.
    C. Persson, Appl. Phys. Lett. 93, 072106 (2008).CrossRefGoogle Scholar
  14. 14.
    M.I. Alonso, M. Garriga, C.A. Durante Rincón, E. Hernández, and M. León, Appl. Phys. A 74, 659 (2002).CrossRefGoogle Scholar
  15. 15.
    R. Zhang, B. Wang, D. Wan, and L. Wei, Opt. Mater. 27, 419 (2004).CrossRefGoogle Scholar
  16. 16.
    A.M. Fernandez and P.J. Sebastian, J. Phys. D Appl. Phys. 26, 2001 (1993).CrossRefGoogle Scholar
  17. 17.
    N.M. Shinde, R.J. Deokate, and C.D. Lokhande, J. Anal. Appl. Pyrolysis 100, 12 (2013).CrossRefGoogle Scholar
  18. 18.
    S. Schorr, A. Weber, V. Honkimaki, and H.-W. Schock, Thin Solid Films 517, 2461 (2009).CrossRefGoogle Scholar
  19. 19.
    A. Weber, R. Mainz, T. Unold, S. Schorr, and H.-W. Schock, Phys. Status Solidi C 6, 1245 (2009).CrossRefGoogle Scholar
  20. 20.
    S. Ahmed, K.B. Reuter, O. Gunawan, L. Guo, L.T. Romankiw, and H. Deligianni, Adv. Energy Mater. 2, 253 (2012).CrossRefGoogle Scholar
  21. 21.
    Y. Hyesun and J. Kim, Thin Solid Films 518, 6567 (2010).CrossRefGoogle Scholar
  22. 22.
    P.A. Fernandes, P.M.P. Salomé, and A.F. da Cunha, J. Alloys Compd. 509, 7600 (2011).CrossRefGoogle Scholar
  23. 23.
    D.M. Berg, R. Djemour, L. Gutay, S. Siebentritt, P.J. Dale, X. Fontane, V. Izquierdo-Roca, and A. Perez-Rodriguez, Appl. Phys. Lett. 100, 192103 (2012).CrossRefGoogle Scholar
  24. 24.
    O. Brafman and S.S. Mitra, Phys. Rev. 171, 931 (1968).CrossRefGoogle Scholar
  25. 25.
    D.M. Berg, PhD thesis, University of Luxembourg, Belval (2012).Google Scholar
  26. 26.
    J. He, L. Sun, Y. Chen, J. Jiang, P. Yang, and J. Chu, J. Power. Sources 273, 600 (2014).CrossRefGoogle Scholar
  27. 27.
    J. Lee, H. Choi, W. Kim, J. Jeong, and J. Park, Sol. Energy 136, 499 (2016).CrossRefGoogle Scholar
  28. 28.
    Ye D, Practical Inorganic Thermodynamic Data Handbook, 2nd edn. (Chinese Edition, 2002), Beijing, China, p. 106.Google Scholar
  29. 29.
    K. Wang, O. Gunawan, T. Todorov, B. Shin, S.J. Chey, N.A. Bojarczuk, D. Mitzi, and S. Guha, Appl. Phys. Lett. 97, 143508 (2010).CrossRefGoogle Scholar
  30. 30.
    B.G. Mendis, M.C.J. Goodman, J.D. Major, A.A. Taylor, K. Durose, and D.P. Halliday, J. Appl. Phys. 112, 124508 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Physics and Electronic Information, Yunnan Key Laboratory of Opto-Electronic Information TechnologyYunnan Normal UniversityKunmingPeople’s Republic of China
  2. 2.Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology Ministry of EducationYunnan Normal UniversityKunmingPeople’s Republic of China

Personalised recommendations