Advertisement

The Concentration Effect of Complexing Agent on the Morphology and Optoelectronic Properties of Electrochemically Deposited n-type Cu2O Thin Films

  • Abdelmadjid Herbadji
  • Ibrahim Yaacoub Bouderbala
  • Loubna MentarEmail author
  • Mohamed Redha Khelladi
  • Amor Azizi
Article
  • 7 Downloads

Abstract

In this work, copper oxide (Cu2O) n-type semiconductors were synthesized on fluorine-doped tin oxide (FTO)-coated conducting glass substrates using copper acetate electrolyte through potentiostatic electrodeposition. The effect of the concentration of acetic acid (CH3COOH) as a complexing agent on the growth mechanism, structural, morphological, and optical properties of Cu2O thin films were studied. The obtained results showed that the concentration of acetic acid affects the structure, grain size, surface topography and optoelectronic properties of Cu2O films significantly. X-ray diffraction (XRD) revealed that all the Cu2O films are pure and crystallize in cubic structure with high crystanillity and preferred (111) orientation. Both Mott-Schottky (MS) and photocurrent (PC) measurements confirm the n-type conduction of the deposited films and the enhancement of their electrical properties with increasing acetic acid concentration. Atomic Force Microscopy (AFM) showed the variation in surface topography and roughness of the Cu2O films. The band gap (Eg) of the Cu2O films decreased slightly with increasing the acetic acid concentration. The Cu2O films deposited with 0.04 of acetic acid exhibited better overall properties and are suitable for Cu2O based homo-junction.

Keywords

Cu2electrodeposition acetic acid AFM homo-junction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    S. Pelegrini, M.A. Tumelero, I.S. Brandt, R.D. Della Pace, R. Faccio, and A.A. Pasa, J. Appl. Phys. 123, 161567 (2018).CrossRefGoogle Scholar
  2. 2.
    R. Wick and S.D. Tilley, J. Phys. Chem. C 119, 26243 (2015).CrossRefGoogle Scholar
  3. 3.
    C.M. McShane and K.S. Choi, Phys. Chem. Chem. Phys. 14, 6112 (2012).CrossRefGoogle Scholar
  4. 4.
    L. Bergerot, C. Jiménez, O. Chaix-Pluchery, L. Rapenne, and J.L. Deschanvres, Phys. Status Solidi 212, 1735 (2015).CrossRefGoogle Scholar
  5. 5.
    S.H. Lee, S.J. Yun, and J.W. Lim, J. ETRI 35, 1156 (2013).CrossRefGoogle Scholar
  6. 6.
    A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, Appl. Phys. Lett. 88, 163502 (2006).CrossRefGoogle Scholar
  7. 7.
    A. Chen, H. Long, X. Li, Y. Li, G. Yang, and P. Lu, Vaccum. 83, 927 (2009).CrossRefGoogle Scholar
  8. 8.
    O. Akhavan, H. Tohidi, and A.Z. Moshfegh, Thin Solid Films 517, 6700 (2009).CrossRefGoogle Scholar
  9. 9.
    A.N.B. Mohamad, F. Mohamad, L.C. Hui, N. Hisyamudin, and M. Izaki, Mater. Sci. Forum 890, 303 (2017).CrossRefGoogle Scholar
  10. 10.
    G. Li, Y. Huang, Q. Fan, M. Zhang, Q. Lan, X. Fan, and C. Zhang, Ionics 22, 2213 (2016).CrossRefGoogle Scholar
  11. 11.
    J. Kaur, O. Bethge, R.A. Wibowo, N. Bansal, M. Bauch, R. Hamid, and T. Dimopoulos, Sol. Energy Mater. Sol. Cells 161, 449 (2017).CrossRefGoogle Scholar
  12. 12.
    C. Zhu, M.J. Panzer, and A.C.S. Appl, Mater. Interfaces 7, 5624 (2015).CrossRefGoogle Scholar
  13. 13.
    X. Jiang, Q. Lin, M. Zhang, G. He, and Z. Sun, Nanoscale Res. Lett. 10, 30 (2010).CrossRefGoogle Scholar
  14. 14.
    Y.K. Hsu, J.R. Wu, M.H. Chen, Y.C. Chen, and Y.G. Lin, Appl. Surf. Sci. 354, 8 (2015).CrossRefGoogle Scholar
  15. 15.
    P. Wang, H. Wu, Y. Tang, R. Amal, and Y.H. Ng, J. Phys. Chem. C 119, 26275 (2015).CrossRefGoogle Scholar
  16. 16.
    R. Wick and S.D. Tilley, J. Phys. Chem. C 119, 26243 (2015).CrossRefGoogle Scholar
  17. 17.
    F. Shao, J. Sun, L. Gao, J. Luo, Y. Liu, and S. Yang, Adv. Mater. Res. 22, 3907 (2012).Google Scholar
  18. 18.
    Y. Yang, J. Han, X. Ning, W. Cao, W. Xu, L. Guo, A.C.S. Appl. Mater. Interfaces. 6, 22534 (2014).CrossRefGoogle Scholar
  19. 19.
    L. Chau-Kuang Liau, Y.C Lin and Yong-Jie Peng, J. Phys. Chem. C.117, 26426 − 26431 (2013).Google Scholar
  20. 20.
    M. Izaki, S. Sasaki, F.B. Mohamad, T. Shinagawa, T. Ohta, S. Watase, and J. Sasano, Thin Solid Films. 520, 1779 (2012).CrossRefGoogle Scholar
  21. 21.
    M. Hanif, A. Sasha, and F. Mohamad, J. Eng. Sci. Technol. 10, 6 (2015).Google Scholar
  22. 22.
    I.Y. Bouderbala, A. Herbadji, L. Mentar, A. Beniaiche, and A. Azizi, J. Electron. Mater. 47, 2000 (2018).CrossRefGoogle Scholar
  23. 23.
    I.Y. Bouderbala, A. Herbadji, L. Mentar, and A. Azizi, Solid State Sci. 83, 161 (2018).CrossRefGoogle Scholar
  24. 24.
    F.S.B. Kafi, K.M.D.C. Jayathileka, R.P. Wijesundera, and W. Siripala, Phys. Status Solidi B235, 1965 (2016).CrossRefGoogle Scholar
  25. 25.
    W. Wang, D. Wu, Q. Zhang, L. Wang, and M. Tao, J. Appl. Phys. 107, 12 (2010).Google Scholar
  26. 26.
    L. Wang and M. Tao, Electrochem. Solid-State Lett. 9, H248 (2007).CrossRefGoogle Scholar
  27. 27.
    F. Mohamad, K.H. Cheong, M. Nor, N. Hisyamudin, and M. Izaki, Key Eng. Mater. 730, 119 (2017).CrossRefGoogle Scholar
  28. 28.
    O. Baka, L. Mentar, M.R. Khelladi, and A. Azizi, J. Korean Phys. Soc. 67, 2011 (2015).CrossRefGoogle Scholar
  29. 29.
    B. Benhaoua, S. Abbas, and A. Rahal, SuperlatticesMicrostruct. 83, 78 (2015).Google Scholar
  30. 30.
    S. Laidoudi, A.Y. Bioud, A. Azizi, G. Schmerber, J. Bartringer, S. Barre, and A. Dinia, Semicond. Sci. Technol. 28, 115005 (2013).CrossRefGoogle Scholar
  31. 31.
    O. Messaoudi, I.B. Assaker, M. Gannouni, A. Souissi, H. Makhlouf, A. Bardaoui, and R. Chtourou, Appl. Surf. Sci. 366, 383 (2016).CrossRefGoogle Scholar
  32. 32.
    T. Shinagawa, Y. Ida, K. Mizuno, S. Watase, M. Watanabe, M. Inaba, and M. Izaki, Cryst. Growth Des. 13, 52 (2012).CrossRefGoogle Scholar
  33. 33.
    W.J. Albery, G.J. O’Shea, and A.L. Smith, J. Chem. Soc., Faraday Trans. 92, 4083 (1996).CrossRefGoogle Scholar
  34. 34.
    Y. Yang, J. Han, X. Ning, W. Cao, W. Xu, L. Guo, and A.C.S. Appl, Mater. Interfaces 24, 22534 (2014).CrossRefGoogle Scholar
  35. 35.
    B.D. Viezbicke, S. Patel, B.E. Davis, and D.P. Birnie, Phys. Status Solidi 252, 1700 (2015).CrossRefGoogle Scholar
  36. 36.
    J. Xie, C. Guo, and C.M. Li, Phys. Chem. Chem. Phys. 15, 15905 (2013).CrossRefGoogle Scholar
  37. 37.
    M. Benhaliliba, C.E. Benouis, M.S. Aida, F. Yakuphanoglu, and A.S. Juarez, J. Sol-Gel. Sci. Technol. 55, 335 (2010).CrossRefGoogle Scholar
  38. 38.
    M.E. Abu-Zeid, A.E. Rakhshani, A.A. Al-Jassar, and Y.A. Youssef, Phys. Status Solidi 93, 613 (1986).CrossRefGoogle Scholar
  39. 39.
    I.S. Brandt, C.A. Martins, V.C. Zoldan, A.D. Viegas, J.H.D. da Silva, and A.A. Pasa, Thin Solid Films 562, 144 (2014).CrossRefGoogle Scholar
  40. 40.
    D. Tahir and S. Tougaard, J. Phys.: Condens. Matter 24, 175002 (2012).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Laboratoire de Chimie, Ingénierie, Moléculaire et NanostructuresUniversité Ferhat Abbas – Sétif 1SétifAlgeria
  2. 2.Département de Génie des Procèdes, Faculté de TechnologieUniversité Ferhat Abbas – Sétif 1SétifAlgeria
  3. 3.Laboratoire des Systèmes Photoniques et Optiques Non Linéaires, Institut d’Optique et Mécanique de PrécisionUniversité Ferhat Abbas – Sétif 1SétifAlgeria

Personalised recommendations