Advertisement

Effects of Au/PEDOT:PSS/P3HT Interface Morphology on the Electrical and Optical Properties of Poly (3-Hexylthiophene)

  • Aline Domingues Batista
  • Wesley Renzi
  • Ricardo Vignoto Fernandes
  • Edson Laureto
  • José Leonil Duarte
  • Henrique de SantanaEmail author
Article
  • 9 Downloads

Abstract

This study analyzed the interfaces between poly(3-hexylthiophene) (P3HT) on an Au substrate (Au/P3HT) and on Au coated with poly(3,4-ethyldioxythiophene) doped with poly(4-styrenesulfonate) (Au/PEDOT:PSS/P3HT). The different morphologies on the nanostructured Au surface were obtained by applying cyclic potentials using cyclic voltammetry to produce different interfaces in the two systems studied. Under atomic force microscopy (AFM), the number of potential activation cycles was found to produce different roughnesses on the surfaces of the Au electrodes. The interfaces formed were examined by electrochemical impedance spectroscopy (EIS) to identify charge transfer processes for the different segments of the P3HT. The systems were characterized optically by measuring photoluminescence (PL), emission decay time and photoluminescence quantum yield (PLQY). It was observed that the differences in the surface morphologies of the substrates significantly influenced the electrical and optical properties of the P3HT at the interfaces.

Keyword

Poly(3-alkylthiophenes) PEDOT/PSS PL spectroscopy electrochemical impedance spectroscopy organic photovoltaic cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Supplementary material

11664_2019_7268_MOESM1_ESM.pdf (102 kb)
Supplementary material 1 (PDF 101 kb)

References

  1. 1.
    A. Isakova and P.D. Topham, J. Polym. Sci. Part B: Polym. Phys. 55, 549 (2017).CrossRefGoogle Scholar
  2. 2.
    J. Yamamoto and Y. Furukawa, Chem. Phys. Lett. 644, 267 (2016).CrossRefGoogle Scholar
  3. 3.
    M. Zagorska, I. Kulszeiwicz-Bajer, A. Pron, P. Raimond, F. Kajzar, and A.J. Attias, Synth. Metals 102, 1141 (1999).CrossRefGoogle Scholar
  4. 4.
    N. Yeh and P. Yeh, Renew. Sustain. Energy Rev. 21, 421 (2013).CrossRefGoogle Scholar
  5. 5.
    S. Antohe, S. Iftimiea, L. Hrosteac, V.A. Antohea, and M. Girtand, Thin Solid Films 642, 214 (2017).CrossRefGoogle Scholar
  6. 6.
    N. Kaur, M. Singh, D. Pathakc, T. Wagner, and J.M. Nunzi, Synth. Metals 190, 20 (2014).CrossRefGoogle Scholar
  7. 7.
    A.D. Batista, D.C. Bento, and H. de Santana, J. Mater. Sci. Mater. Electron. 28, 1514 (2017).CrossRefGoogle Scholar
  8. 8.
    A.D. Batista, W. Renzi, J.L. Duarte, and H. De Santana, J. Electron. Mater. 47, 6403 (2018).CrossRefGoogle Scholar
  9. 9.
    J.H.C. de Lima, D.F. Valezi, A.D. Batista, D.C. Bento, and H. De Santana, J. Mater. Sci. Mater. Electron. 29, 6511 (2018).CrossRefGoogle Scholar
  10. 10.
    N. Kalfagiannis, P.G. Karagiannidis, C. Pitsalidis, N.T. Panagiotopoulos, C. Gravalidis, S. Kassavetis, P. Patsalas, and S. Logothetidis, Sol. Energy Mater. Sol. Cells 104, 165 (2012).CrossRefGoogle Scholar
  11. 11.
    H.S. Noh, E.H. Cho, H.M. Kim, Y.D. Han, and J. Joo, Org. Electron. 14, 278 (2013).CrossRefGoogle Scholar
  12. 12.
    S.S. Kim, S.I. Na, J. Jo, D.Y. Kim, and Y.C. Nah, Appl. Phys. Lett. 93, 073307 (2008).CrossRefGoogle Scholar
  13. 13.
    A. Haldar, S.D. Yambem, K.-S. Liao, N.J. Alley, E.P. Dillon, A.R. Barron, and S.A. Curran, Thin Solid Films 519, 6169 (2011).CrossRefGoogle Scholar
  14. 14.
    H.L. Gao, X.W. Zhang, Z.G. Yin, H.R. Tan, S.G. Zhang, J.H. Meng, and X. Liu, Appl. Phys. Lett. 101, 133903 (2012).CrossRefGoogle Scholar
  15. 15.
    C.H. Lei, A. Das, M. Elliott, J.E. Macdonald, and M.L. Turner, Synth. Metals 145, 217 (2004).CrossRefGoogle Scholar
  16. 16.
    P. Gao and M.J. Weaver, J. Phys. Chem. 89, 5040 (1985).CrossRefGoogle Scholar
  17. 17.
    G. Louarn, J.Y. Mevellec, J.P. Buisson, and S. Lefrant, J. Chem. Phys. 89, 987 (1992).Google Scholar
  18. 18.
    R. De Oliveira, F.L. Pisseti, and A.M.S. Lucho, Quim. Nova 39, 146 (2016).Google Scholar
  19. 19.
    S. Linic, P. Christopher, and D.B. Ingram, Nat. Mater. 10, 911 (2011).CrossRefGoogle Scholar
  20. 20.
    D.C. Bento, E.C.R. Maia, P.R.P. Rodrigues, G. Louarn, and H. De Santana, J. Mater. Sci. Mater. Electron. 24, 4732 (2013).CrossRefGoogle Scholar
  21. 21.
    G. Lillie, P. Payne, and P. Vagdama, Sens. Actuators B 78, 249 (2001).CrossRefGoogle Scholar
  22. 22.
    D.C. Bento, E.A. Da Silva, C.A. Olivati, G. Louarn, and H. De Santana, J. Mater. Sci. Mater. Electron. 26, 149 (2015).CrossRefGoogle Scholar
  23. 23.
    D.C. Bento, E.C.R. Maia, T.N.M. Cervantes, R.V. Fernandes, E. Di Mauro, E. Laureto, M.A.T. da Silva, J.L. Duarte, I.F.L. Dias, and H. De Santana, Synth. Metals 162, 2433 (2012).CrossRefGoogle Scholar
  24. 24.
    W. Renzi, F. Franchello, N.J.A. Cordeiro, V.B. Pelegati, C.L. César, E. Laureto, and J.L. Duarte, J. Mater. Sci. Mater. Electron. 28, 17750 (2017).CrossRefGoogle Scholar
  25. 25.
    R.V. Fernandes, F. Franchello, D.C. Bento, W. Renzi, J.L. Duarte, H. De Santana, and E. Laureto, Appl. Phys. A Mater. Sci. Process. 124, 447 (2018).CrossRefGoogle Scholar
  26. 26.
    M.S.A. Abdou and S. Holdcroft, Macromolecules (Washington, DC, U. S.) 26, 2954 (1993).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Departamento de Química, CCEUniversidade Estadual de LondrinaLondrinaBrazil
  2. 2.Departamento de Física, CCEUniversidade Estadual de LondrinaLondrinaBrazil
  3. 3.Instituto Federal do ParanáPitangaBrazil

Personalised recommendations