Water-Based Sol–Gel Synthesis of Ce-Doped TiO2 Nanoparticles

  • Mohammad Bagher Marami
  • Majid FarahmandjouEmail author


Pure titanium dioxide (TiO2) and Ce-doped TiO2 nanoparticles (NPs) were synthesized with the different dopant percentages of 2%, 4%, 6%, 8%, and 10% by using titanium tetrachloride (TiCl4) and cerium chloride (CeCl3) precursors, pure water as a solvent, and hydrochloric acid (HCl) as the hydrolysis reactor in the presence of ethylene glycol (C4H10O3) stabilizer through the sol–gel method. The morphological, structural, optical and electronic properties of the NPs were investigated via x-ray diffraction (XRD) analysis, field emission scanning electron microscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS) and photoluminescence spectroscopy (PL). From the XRD analysis, it was found that the structure of the Ce-TiO2 NPs remained unchanged in the tetragonal state and anatase phase by increasing dopant, while the size of the nanocrystals (29 nm) in the pure state decreased down to 25 nm by increasing dopant up to 6%. The apparent pseudo-spherical shape and diameter of about 26 nm were obtained for the impure NPs through TEM. The UV-DRS analysis indicated the wide-band gap formation of the NPs through the water-based sol–gel method. As Ce increased, the band gap was enhanced from 5.02 eV for the pure TiO2 NPs up to 5.46 eV for the NPs of 10% dopant. The wide band gap created in these NPs allowed them to be used with an optimum absorption in the ultraviolet (UV) light applications. The results of FTIR analysis showed that the absorption peak of 508 cm−1 was related to the vibrational bond of Ti-O-Ce in the pure state, which changed towards the frequencies of 498 cm−1, 513 cm−1, 490 cm−1, 492 cm−1 and 469 cm−1 for the Ce dopant concentrations of 2%, 4%, 6%, 8%, and 10% entering into the TiO2 matrix, respectively. Finally, the results of the PL analysis revealed that the maximum energy-band interaction of TiO2 with Ce was created at 426 nm with a dopant of 6%.


TiO2 nanoparticles cerium dopant sol gel method optical properties crystal structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    M. Zarinkamar, M. Farahmandjou, and T.P. Firoozabadi, J. Nanostruct. 6, 114 (2016).Google Scholar
  2. 2.
    M. Farahmandjou, Iran. J. Phys. Res. 16, 1 (2016).CrossRefGoogle Scholar
  3. 3.
    M. Farahmandjou and P. Khalili, Int. J. Fundam. Phys. Sci. 3, 54 (2013).Google Scholar
  4. 4.
    S. Jurablu, M. Farahmandjou, and T.P. Firoozabadi, J. Theor. Appl. Phys. 9, 261 (2015).CrossRefGoogle Scholar
  5. 5.
    M. Farahmandjou and F. Soflaee, Chin. J. Phys. 53, 080801 (2015).Google Scholar
  6. 6.
    M. Farahmandjou and F. Soflaee, Phys. Chem. Res. 3, 193 (2015).Google Scholar
  7. 7.
    S. Shadrokh, M. Farahmandjou, and T.P. Firozabadi, Phys. Chem. Res. 4, 153 (2016).Google Scholar
  8. 8.
    M. Zarinkamar, M. Farahmandjou, and T.P. Firoozabadi, J. Ceram. Proc. Res. 17, 166 (2016).Google Scholar
  9. 9.
    A. Khodadadi, M. Farahmandjou, and M. Yaghoubi, Mater. Res. Express 6, 025029 (2019).CrossRefGoogle Scholar
  10. 10.
    M. Farahmandjou, Chin. Phys. Lett. 29, 077306 (2012).CrossRefGoogle Scholar
  11. 11.
    M. Farahmandjou and N. Golabiyan, Int. J. Bio-Inorg. Hybr. Nanomater. 5, 73 (2016).Google Scholar
  12. 12.
    M. Farahmandjou, Turk. J. Eng. Environ. Sci. 34, 265 (2010).Google Scholar
  13. 13.
    F. Akhtari, S. Zorriasatein, M. Farahmandjou, and S.M. Elahi, Int. J. Appl. Ceram. Technol. 15, 723 (2018).CrossRefGoogle Scholar
  14. 14.
    F. Akhtari, S. Zorriasatein, M. Farahmandjou, and S.M. Elahi, Mater. Res. Express 5, 065015 (2018).CrossRefGoogle Scholar
  15. 15.
    A. Khodadadi, M. Farahmandjou, M. Yaghoubi, and A.R. Amani, Int. J. Appl. Ceram. Technol. 16, 718 (2019).CrossRefGoogle Scholar
  16. 16.
    M. Farahmandjou, S. Honarbakhsh, and S. Behrouzinia, J. Supercond. Nov. Magn. 31, 4147 (2018).CrossRefGoogle Scholar
  17. 17.
    M. Farahmandjou and P. Khalili, Aust. J. Basic Appl. Sci. 7, 462 (2013).Google Scholar
  18. 18.
    S. Jurablu, M. Farahmandjou, and T.P. Firoozabadi, J. Sci. Islam. Repub. Iran 26, 281 (2015).Google Scholar
  19. 19.
    M. Farahmandjou and M. Dastpak, Phys. Chem. Res. 6, 713 (2018).Google Scholar
  20. 20.
    M. Farahamndjou, Rev. Mex. Fis. 59, 205 (2013).Google Scholar
  21. 21.
    M. Dastpak, M. Farahmandjou, and T.P. Firoozabadi, J. Supercond. Nov. Magn. 29, 2925 (2016).CrossRefGoogle Scholar
  22. 22.
    M. Farahmandjou, S. Honarbakhsh, and S. Behrouzinia, Phys. Chem. Res. 4, 655 (2016).Google Scholar
  23. 23.
    T. Jiang, Y. Wang, D. Meng, X. Wu, J. Wang, and J. Chen, Appl. Surf. Sci. 311, 602 (2014).CrossRefGoogle Scholar
  24. 24.
    Y. Wang, T. Jiang, D. Meng, J. Yang, Y. Li, Q. Ma, and J. Han, Appl. Surf. Sci. 317, 414 (2014).CrossRefGoogle Scholar
  25. 25.
    Y. Wang, M. Zheng, H. Fang, and X. Meng, J. Mater. Sci. Mater. Electron. 29, 19575 (2018).Google Scholar
  26. 26.
    S. Motaghi and M. Farahmandjou, Mater. Res. Express 6, 045008 (2019).CrossRefGoogle Scholar
  27. 27.
    S. Behrouzinia, D. Salehinia, K. Khorasani, and M. Farahmandjou, Opt. Commun. 436, 143 (2019).CrossRefGoogle Scholar
  28. 28.
    M. Farahmandjou and S. Motaghi, Opt. Commun. 441, 1 (2019).CrossRefGoogle Scholar
  29. 29.
    H.Y. Yang, M.F. Lee, C.H. Huang, Y.S. Lo, Y.J. Chen, and M.S. Wang, Thin films 518, 1590 (2009).CrossRefGoogle Scholar
  30. 30.
    W. Chung-Yi, L. Yuan-Ling, L. Yu-Shiu, L. Chen-Jui, and W. Chen-Hou, Appl. Surf. Sci. 280, 737 (2013).CrossRefGoogle Scholar
  31. 31.
    W.H. Ma, Z. Lu, and M.S. Zhang, Appl. Phys. A 66, 621 (1998).CrossRefGoogle Scholar
  32. 32.
    B. O’Regan and M. Grätzel, Nature 353, 737 (1991).CrossRefGoogle Scholar
  33. 33.
    W. Xue, G. Zhang, X. Xu, X. Yang, C. Liu, and Y. Xu, Chem. Eng. J. 167, 397 (2011).CrossRefGoogle Scholar
  34. 34.
    M. Yanagawa, H. Chen, and L. Han, Jpn. J. Appl. Phys. 51, 10 (2012).Google Scholar
  35. 35.
    H.C. Choi, Y.M. Jung, and S.B. Kim, Vib. Spectrosc. 37, 33 (2005).CrossRefGoogle Scholar
  36. 36.
    M. Farahmandjou, M. Ramazani, and T.P. Firoozabadi, Phys. Chem. Res. 3, 293 (2015).Google Scholar
  37. 37.
    M. Ramazani, M. Farahmandjou, and T.P. Firoozabadi, Int. J. Nanosci. Nanotechnol. 11, 115 (2015).Google Scholar
  38. 38.
    M. Sathish, B. Viswanathan, R.P. Viswanath, and C.S. Gopinath, Chem. Mater. 17, 6349 (2005).CrossRefGoogle Scholar
  39. 39.
    T. Ohno, Electrochemistry 73, 1047 (2005).Google Scholar
  40. 40.
    J. Xiaoyuan, H. Li, and X. Zheng, J. Mater. Sci. 43, 6505 (2008).CrossRefGoogle Scholar
  41. 41.
    B. Khoshnevisan, M.B. Marami, and M. Farahmandjou, Chin. Phys. Lett. 35, 027501 (2018).CrossRefGoogle Scholar
  42. 42.
    M.B. Marami, M. Farahmandjou, and B. Khoshnevisan, J. Electron. Mater. 47, 3741 (2018).CrossRefGoogle Scholar
  43. 43.
    T. Marimuthu, N. Anandhan, S. Rajendran, M. Mummoorthy, and M. Vidhya, Int. J. ChemTech Res. 6, 5309 (2014).Google Scholar
  44. 44.
    F.B. Li, X.Z. Li, M.F. Hou, K.W. Cheah, and W.C.H. Choy, Appl. Catal. A Gen. 285, 181 (2005).CrossRefGoogle Scholar
  45. 45.
    A. Jafari, S. Khademi, and M. Farahmandjou, Mater. Res. Express 5, 095008 (2018).CrossRefGoogle Scholar
  46. 46.
    A. Jafari, S. Khademi, M. Farahmandjou, A. Darudi, and R. Rasuli, J. Electron. Mater. 47, 6901 (2018).CrossRefGoogle Scholar
  47. 47.
    M.S. Francisco and V.R. Mastelaro, Chem. Mater. 14, 2514 (2002).CrossRefGoogle Scholar
  48. 48.
    P. Scherrer, Math. Phys. Kl. 2, 98 (1918).Google Scholar
  49. 49.
    C.H. Wei, X.H. Tang, J.R. Liang, and S.Y. Tan, J. Environ. Sci. 19, 90 (2007).CrossRefGoogle Scholar
  50. 50.
    J.M. Berg, A. Romoser, N. Banerjee, R. Zebda, and C.M. Sayes, Nanotoxicology 3, 276 (2009).CrossRefGoogle Scholar
  51. 51.
    J.R. Xiao, T.Y. Peng, R. Li, Z.H. Peng, and C.H. Yan, J. Solid State Chem. 179, 1161 (2006).CrossRefGoogle Scholar
  52. 52.
    M. Farahmandjou, J. Supercond. Nov. Magn. 25, 2075 (2012).CrossRefGoogle Scholar
  53. 53.
    A. León, P. Reuquen, C. Garín, R. Segura, P. Vargas, P. Zapata, and P.A. Orihuela, Appl. Sci. 7, 49 (2017).CrossRefGoogle Scholar
  54. 54.
    P.A. Connor, K.D. Dobson, and A.J. McQuillan, Langmuir 15, 2402 (1999).CrossRefGoogle Scholar
  55. 55.
    S. Khatoon, I.A. Wani, J. Ahmed, T. Magdaleno, O.A. Al-Hartomy, and T. Ahmad, Mater. Chem. Phys. 138, 519 (2013).CrossRefGoogle Scholar
  56. 56.
    Z. Liu, L. Xing, H. Ma, L. Cheng, J. Liu, J. Yang, and Q. Zhanga, Environ. Prog. Sustain. Energy 36, 494 (2017).CrossRefGoogle Scholar
  57. 57.
    P. Sun, L. Liu, S. Cui, and J. Liu, Catal. Lett. 144, 2107 (2014).CrossRefGoogle Scholar
  58. 58.
    S. Udayakumar, V. Renuka, and K. Kavitha, J. Chem. Pharm. Res. 4, 1271 (2012).Google Scholar
  59. 59.
    T.M. Hammad, J.K. Salem, and R.G. Harrison, Appl. Nanosci. 3, 133 (2013).CrossRefGoogle Scholar
  60. 60.
    B.Y. Geng, G.Z. Wang, Z. Jiang, T. Xie, S.H. Sun, G.W. Meng, and L.D. Zhang, Appl. Phys. Lett. 82, 4791 (2003).CrossRefGoogle Scholar
  61. 61.
    M. Zarinkamar, M. Farahmandjou, and T.P. Firoozabadi, J. Nanostruct. 6, 116 (2016).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Physics, Parand BranchIslamis Azad UniversityParandIran
  2. 2.Departments of Physics, Varamin Pishva BranchIslamis Azad UniversityVaraminIran

Personalised recommendations