Thermoelectric Properties of Nanocrystalline Silicon Films Prepared by Hot-Wire and Plasma-Enhanced Chemical-Vapor Depositions

  • Battogtokh JugdersurenEmail author
  • Brian T. Kearney
  • Xiao Liu
  • Rhonda M. Stroud
  • James C. Culbertson
  • Paul A. Desario
  • William Nemeth
  • Qi Wang


We report thermoelectric measurements over a temperature range of 80 K to 300 K of heavily boron-doped nanocrystalline silicon films prepared by hot-wire and plasma-enhanced chemical-vapor depositions. The nanocrystalline silicon films were doped by either gaseous deposition precursors or post-deposition ion implantation, resulting in boron concentrations ranging from 1–2×1020 cm−3 to 3 × 1021 cm−3. Reasonable values of the Seebeck coefficient and electrical conductivity were obtained at 300 K, comparable to many other research work. We also report thermal conductivity measurements on these films before doping, which we use to estimate their prospective thermoelectric efficiency. These measurements show values as low as 0.76 W/mK at 300 K which depend highly upon the grain sizes of the nc-Si films. We find that post-deposition doping by ion-implantation is more effective at enhancing the power factor than gaseous doping, and the power factor is only weakly dependent upon doping concentration for the films doped by ion implantation. We conclude that improvements of the thermoelectric efficiency of nc-Si films may depend more on a reduction of their thermal conductivity than doping optimization. The small grain sizes and the low thermal conductivity of the undoped nc-Si films accomplished in this work are therefore encouraging developments.


Thermoelectric power factor thermal conductivity nanocrystalline silicon chemical-vapor deposition ion-implantation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    D.M. Rowe, Thermoelectrics Handbook: Macro to Nano (Boca Raton: CRC (Taylor and Francis Group), 2005).Google Scholar
  2. 2.
    J. He and T.M. Tritt, Science 29, 6358 (2017).Google Scholar
  3. 3.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).CrossRefGoogle Scholar
  4. 4.
    K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).CrossRefGoogle Scholar
  5. 5.
    G. Schierning, H. Wiggers, and R. Schmechel, ECS Trans. 69, 3 (2015).CrossRefGoogle Scholar
  6. 6.
    S. Uma, A.D. McConnell, M. Asheghi, K. Kurabayashi, and K.A. Goodson, Int. J. Thermophys. 22, 605 (2001).CrossRefGoogle Scholar
  7. 7.
    D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003).CrossRefGoogle Scholar
  8. 8.
    Z. Wang, J. Alaniz, W. Jang, J. Garay, and C. Dames, Nano Lett. 11, 2206 (2011).CrossRefGoogle Scholar
  9. 9.
    D.G. Cahill, H.E. Fisher, T. Klitsner, E.T. Swartz, and R.O. Pohl, J. Vac. Sci. Technol. A 7, 1259 (1989).CrossRefGoogle Scholar
  10. 10.
    B. Jugdersuren, B.T. Kearney, D.R. Queen, T.H. Metcalf, J.C. Culbertson, C.N. Chervin, R.M. Stroud, W. Nemeth, Q. Wang, and X. Liu, Phys. Rev. B 96, 014206 (2017).CrossRefGoogle Scholar
  11. 11.
    N. Neophytou, X. Zianni, H. Kosina, S. Frabboni, B. Lorenzi, and D. Narducci, Nanotechnology 24, 205402 (2013).CrossRefGoogle Scholar
  12. 12.
    V. Kessler, D. Gautam, T. Hülser, M. Spree, R. Theissmann, M. Winterer, H. Wiggers, G. Schierning, and R. Schmechel, Adv. Eng. Mater. 15, 379 (2013).CrossRefGoogle Scholar
  13. 13.
    T. Claudio, N. Stein, D.G. Stroppa, B. Klobes, M. Koza, P. Kudejova, N. Petermann, H. Wiggers, G. Schierning, and R.P. Hermann, Phys. Chem. Chem. Phys. 16, 25701 (2014).CrossRefGoogle Scholar
  14. 14.
    H. Zhou, P. Kropelnicki, and C. Lee, Nanoscale 7, 532 (2015).CrossRefGoogle Scholar
  15. 15.
    J. Loureiro, T. Mateus, S. Filonovich, M. Ferreira, J. Figueira, A. Rodrigues, B.F. Donovan, P.E. Hopkins, and I. Ferreira, Appl. Phys. A 120, 1497 (2015).CrossRefGoogle Scholar
  16. 16.
    K. Valalaki, N. Vouroutzis, and A.G. Nassiopoulou, J. Phys. D Appl. Phys. 49, 315104 (2016).CrossRefGoogle Scholar
  17. 17.
    E. Acosta, N.M. Wight, V. Smirnov, J. Buckman, and N.S. Bennett, J. Electron. Mater. 6, 3077 (2018).CrossRefGoogle Scholar
  18. 18.
    B. Nemeth, D.L. Young, M.R. Page, V. LaSalvia, S. Johnston, R. Reedy, and P. Stradins, J. Mater. Res. 31, 671 (2016).CrossRefGoogle Scholar
  19. 19.
    The Stopping and Range of Ions in Matter.
  20. 20.
    B.T. Kearney, B. Jugdersuren, D.R. Queen, T.H. Metcalf, J.C. Culbertson, P.A. Desario, R.M. Stroud, W. Nemeth, Q. Wang, and X. Liu, J. Phys. Condens. Matter 30, 085301 (2018).CrossRefGoogle Scholar
  21. 21.
    D.G. Cahill, M. Katiyar, and J.R. Abelson, Phys. Rev. B 50, 9 (1994).CrossRefGoogle Scholar
  22. 22.
    J.P. Moore and R.S. Graves, J. Appl. Phys. 44, 1174 (1973).CrossRefGoogle Scholar
  23. 23.
    G.U. Sumanasekera, L. Grigorian, and P.C. Eklund, Meas. Sci. Technol. 11, 273 (2000).CrossRefGoogle Scholar
  24. 24.
    N.H. Nickel, P. Lengsfeld, and I. Sieber, Phys. Rev. B 61, 15558 (1999).CrossRefGoogle Scholar
  25. 25.
    R. Basu, S. Bhattacharya, R. Bhatt, M. Roy, S. Ahmad, A. Singh, M. Navaneethan, Y. Hayakawa, D.K. Aswala, and S.K. Gupta, J. Mater. Chem. A 2, 6922 (2014).CrossRefGoogle Scholar
  26. 26.
    L. Pelaz, L.A. Marqués, and J. Barbolla, J. Appl. Phys. 96, 5947 (2004).CrossRefGoogle Scholar
  27. 27.
    M. Takashiri, T. Borca-Tasciuc, A. Jacquot, K. Miyazaki, and G. Chen, J. Appl. Phys. 100, 054315 (2006).CrossRefGoogle Scholar
  28. 28.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  29. 29.
    Y. Lee and G.S. Hwang, Phys. Rev. B 86, 075202 (2012).CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2019

Authors and Affiliations

  1. 1.KeyW CorporationHanoverUSA
  2. 2.Naval Research LaboratoryWashingtonUSA
  3. 3.U.S. Naval Research LaboratoryWashingtonUSA
  4. 4.National Renewable Energy LaboratoryGoldenUSA

Personalised recommendations