Advertisement

Effects of l-Cysteine in Zinc Bis Thiourea Acetate (ZBTA) Crystal Lattice

  • D. Kanimozhi
  • R. IndirajithEmail author
Article
  • 2 Downloads

Abstract

The current work deals with the synthesis and characterization of l-cysteine doped Zinc Bis Thiourea Acetate (ZBTA) crystals. The l-cysteine doped Zinc Bis Thiourea Acetate (ZBTA) reveals noticeable morphological changes due to various types of dopand. Lattice parameters were observed using single crystal x-ray diffraction (SXRD) and powder x-ray diffraction (PXRD). From the XRD data, it is clear that the Zinc Bis thiourea acetate (ZBTA) was crystallized in a monoclinic structure. The crystallite size and strain of the material were calculated using the Williamson-Hall plot (W-H plot). The existence of functional groups and vibrational modes of l-cysteine doped Zinc Bis thiourea acetate (ZBTA) crystals were predicted qualitatively by Fourier transform infrared spectroscopy. Optical properties were identified by recording the UV–Visible spectrum, showing that the crystal is transparent in the complete visible region. Various optical parameters were calculated. An etching and hardness test was performed to study the crystal growth nature and the strength of the crystal. Thermal analyses (TGA) of the present crystal were performed and identified that the material possessed good thermal stability up to 188°C. The second order non-linear optical efficiency (SHG) of the grown crystal was determined by powder Kurtz-Perry test, which confirmed that l-cysteine doped ZBTA possesses SHG properties. The laser damage threshold (LDT) analysis was performed using Nd: YAG laser with a wavelength of 1064 nm, and the laser damage threshold value of the crystal was found to be higher than that of standard KDP material. In the photoluminescence (PL) spectrum, sharp and broad peaks were identified; from the emission of colors, the l-cysteine doped ZBTA crystal was deemed suitable for applications in violet, blue and green color light emitting diodes. The energy corresponding to the particular wavelength was also calculated.

Keywords

Crystal structure etching dielectric constant dielectric susceptibility photoluminescence seed crystals nonlinear optical 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    F.M. Schellengerg, W. Lenth, W.P. Risk, and G.C. Bjorklund, Appl. Phys. Lett. 51, 2192 (1987).CrossRefGoogle Scholar
  2. 2.
    C.T. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, and S.J. Lin, Opt. Soc. Am. B 6, 616 (1989).CrossRefGoogle Scholar
  3. 3.
    W.L. Smith, Appl. Opt. 16, 1798 (1977).CrossRefGoogle Scholar
  4. 4.
    F.C. Zumsteg, J.D. Birlein, and T.E. Gier, J. Appl. Phys. 47, 4980 (1976).CrossRefGoogle Scholar
  5. 5.
    C.T. Chen, Y. Wang, Y.N. Xia, B.C. Wu, D.Y. Tang, K.C. Wu, W.R. Zeng, L.H. Yu, and L.F. Mei, J. Appl. Phys. 77, 2268 (1995).CrossRefGoogle Scholar
  6. 6.
    G.D. Boyd, R.C. Miller, K. Nassau, W.L. Band, and A. Savage, Appl. Phys. Lett. 5, 234 (1964).CrossRefGoogle Scholar
  7. 7.
    D.S. Chemla and J. Zyss, Nonlinear optical properties of organic molecules and crystals, vol. 1 (New York: Academic Press, 1987).Google Scholar
  8. 8.
    P. Gunter, C. Bosshard, K. Sutter, H. Arend, G. Chapuis, R.J. Twieg, and D. Dobrowolski, Appl. Phys. Lett. 50, 486 (1987).CrossRefGoogle Scholar
  9. 9.
    L.F. Warren, in New Development in semi organic nonlinear optical crystals’, in Electronic Materials’, Our future, Proceedings of the Fourth International SAMPE Electronics Conference, (ed.) Allred, R.E., Martinez, R.J., Wischmann, W.D., (Society for the Advancement of Material and Process Engineering, Covina, Ca. 4, 388 (1990).Google Scholar
  10. 10.
    R.T. Bailey, Acta Crystallograph. A47, 145 (1991).CrossRefGoogle Scholar
  11. 11.
    K.M. Hellwege and A.M. Hellwege, Landolt-Bornstein. Group II 14, 584 (1982).Google Scholar
  12. 12.
    V. Kannan, N.P. Rajesh, R. Bairavaganesh, P. SanthanaRaghavan, and P. Ramasamy, J. Cryst. Growth 269, 565 (2004).CrossRefGoogle Scholar
  13. 13.
    B.Y. Shteinberg, Y.I. Mushkiw, and A.I. Finkelshtein, Opt. Spectrosc. 33, 589 (1972).Google Scholar
  14. 14.
    L. Ruby Nirmala and J. Thomas Joseph Prakash, SpectrochimicaActa part A: Molecular and Biomolecular Spectroscopy 97, 673 (2012).CrossRefGoogle Scholar
  15. 15.
    J. Felicita Vimila and J. Thomas Joseph Prakash, SpectrochimicaActa part A: Molecular and Biomolecular Spectroscopy 107, 371 (2013).CrossRefGoogle Scholar
  16. 16.
    M. Lydia Caroline and S. Vasudevan, Curr. Appl. Phys. 9, 1054 (2009).CrossRefGoogle Scholar
  17. 17.
    L. Cavala, G.F. Gasparri, G.D. Andreetti, and P. Domiano, Acta Crystallogr. 22, 90 (1967)Google Scholar
  18. 18.
    S.K. Kushwaha, K.K. Maurya, N. Vijayan, B. Kumar, R. Bhatt, S. Ganesamoorthy, and G. Bhagavannarayana, Cryst. Eng. Comm. 14, 3297 (2012).CrossRefGoogle Scholar
  19. 19.
    A. Hussain, A. Begum, and A. Rahman, Arab. J. Sci. Eng. 39, 169 (2013).CrossRefGoogle Scholar
  20. 20.
    A. Begum, A. Hussian, and A. Rahman, Arab. J. Sci. Eng. 38, 163 (2013).CrossRefGoogle Scholar
  21. 21.
    E.M. Mahdi, M. Hamdi, and M.S. MeorYusoff, Arab. J. Sci. Eng. 38, 1701 (2013).CrossRefGoogle Scholar
  22. 22.
    N.R. Kuncher, R. Mary, and S. Truter, J. Chem. Soc. 504, 3478 (1958)Google Scholar
  23. 23.
    K. Nakamoto, IR Spectra of Inorganic and Coordination compounds, Vol. 2 (New York: Wiley, 1978).Google Scholar
  24. 24.
    K.V. Rao and A. Smakula, J. Appl. Phys. 37, 319 (1966).CrossRefGoogle Scholar
  25. 25.
    J. Thomas Joseph Prakash and L. Ruby Nirmala, Int. J. Comput. Appl. 975, 8887 (2010).Google Scholar
  26. 26.
    S.K. Kurtz, ‘New nonlinear optical materials’, IEEE. J. Quantum Electron 4, 578 (1968).CrossRefGoogle Scholar
  27. 27.
    Z. Delci, D. Shyamala, S. Karuna, and A. Thayumanavan, Archives of Physics Research 3, 346 (2012).Google Scholar
  28. 28.
    S. Nandhini, K. Sudhakar, S. Muniyappan, and P. Murugakoothan, Opt. Laser Technol. 105, 249 (2018).CrossRefGoogle Scholar
  29. 29.
    P.A. Ilenikhena, Afr. Phys. Rev. 2, 68 (2008).Google Scholar
  30. 30.
    S. Amelinckx, Solid State Phys 6, 683 (1969).Google Scholar
  31. 31.
    N. Boling, M. Crisp, and G. Dubé, Laser induced surface damage. Appl. Opt. 12, 650 (1973).CrossRefGoogle Scholar
  32. 32.
    Sivasubramani Vediyappan, Raja Arumugam, Karuppasamy Pichan, and Ramachandran Kasthuri, Senthil Pandian Muthu, Ramasamy Perumal. Appl. Phys. A 123, 780 (2017).CrossRefGoogle Scholar
  33. 33.
    M. Bass, Handbook of Optics, 3rd ed., vol. 4 (New York: McGraw-Hill, 2010), p. 5.70.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsB.S. Abdur Rahman Crescent Institute of Science and TechnologyChennaiIndia

Personalised recommendations