Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6145–6151 | Cite as

Development of InAs/InAsSb Type II Strained-Layer Superlattice Unipolar Barrier Infrared Detectors

  • David Z. TingEmail author
  • Alexander Soibel
  • Arezou Khoshakhlagh
  • Sam A. Keo
  • Sir B. Rafol
  • Linda Höglund
  • Edward M. Luong
  • Anita M. Fisher
  • Cory J. Hill
  • Sarath D. Gunapala
U.S. Workshop on Physics and Chemistry of II-VI Materials 2018

Abstract

We recently reported mid-wavelength infrared (MWIR) InAs/InAsSb type II strained-layer superlattice (T2SLS) unipolar barrier detectors and focal-plane arrays with significantly higher operating temperature than InSb. Herein, we document the development leading to the MWIR InAs/InAsSb T2SLS detectors at the NASA Jet Propulsion Laboratory. We also briefly compare the InAs/InAsSb T2SLS with some other approaches.

Keywords

Infrared detector unipolar barrier nBn mid-wavelength infrared type II superlattice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors thank J. Nguyen, J. M. Mumolo, J. K. Liu, and A. Liao for technical assistance. The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

References

  1. 1.
    D.Z. Ting, A. Soibel, A. Khoshakhlagh, S.B. Rafol, S.A. Keo, L. Höglund, A.M. Fisher, E.M. Luong, and S.D. Gunapala, Appl. Phys. Lett. 113, 021101 (2018).CrossRefGoogle Scholar
  2. 2.
    D.Z. Ting, S.B. Rafol, K.A. Sam, J. Nguyen, A. Khoshakhlagh, A. Soibel, L. Höglund, A.M. Fisher, E.M. Luong, J.M. Mumolo, J.K. Liu, and S.D. Gunapala, IEEE Photon. J. 10, 6804106 (2018).CrossRefGoogle Scholar
  3. 3.
    S. Maimon and G.W. Wicks, Appl. Phys. Lett. 89, 151109 (2006).CrossRefGoogle Scholar
  4. 4.
    A. Soibel, C.J. Hill, S.A. Keo, L. Höglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D.Z.-Y. Ting, and S.D. Gunapala, Appl. Phys. Lett. 105, 023512 (2014).CrossRefGoogle Scholar
  5. 5.
    A. Soibel, S.A. Keo, A. Fisher, C.J. Hill, E. Luong, D.Z. Ting, S.D. Gunapala, D. Lubyshev, Y. Qiu, J.M. Fastenau, and A.W.K. Liu, Appl. Phys. Lett. 112, 041105 (2018).CrossRefGoogle Scholar
  6. 6.
    D.Z.-Y. Ting, S.V. Bandara, S.D. Gunapala, J.M. Mumolo, S.A. Keo, C.J. Hill, J.K. Liu, E.R. Blazejewski, S.B. Rafol, and Y.-C. Chang, Appl. Phys. Lett. 94, 111107 (2009).CrossRefGoogle Scholar
  7. 7.
    S.D. Gunapala, S.V. Bandara, C.J. Hill, D.Z. Ting, J.K. Liu, S.B. Rafol, E.R. Blazejewski, J.M. Mumolo, S.A. Keo, S. Krishna, Y.-C. Chang, and C.A. Shott, IEEE J. Quantum Electron. 43, 230 (2007).CrossRefGoogle Scholar
  8. 8.
    C.J. Hill, A. Soibel, S.A. Keo, J.M. Mumolo, D.Z. Ting, and S.D. Gunapala, Electron. Lett. 46, 1286 (2010).CrossRefGoogle Scholar
  9. 9.
    D.Z.-Y. Ting, A. Soibel, S.A. Keo, A. Khoshakhlagh, C.J. Hill, L. Höglund, J.M. Mumolo, and S.D. Gunapala, J. Electron. Mater. 42, 3071 (2013).CrossRefGoogle Scholar
  10. 10.
    C.J. Hill, D.Z. Ting, and S.D. Gunapala, U.S. Patent Application 2010/0155777 (2010); U.S. patent 9,466,741 (2016).Google Scholar
  11. 11.
    A. Soibel, D.Z. Ting, C.J. Hill, A.M. Fisher, L. Höglund, S.A. Keo, and S.D. Gunapala, Appl. Phys. Lett. 109, 103505 (2016).CrossRefGoogle Scholar
  12. 12.
    L. Höglund, D.Z. Ting, A. Khoshakhlagh, A. Soibel, C.J. Hill, A. Fisher, S. Keo, and S.D. Gunapala, Appl. Phys. Lett. 103, 221908 (2013).CrossRefGoogle Scholar
  13. 13.
    W.E. Tennant, J. Electron. Mater. 39, 1030 (2010).CrossRefGoogle Scholar
  14. 14.
    D.Z. Ting, A. Soibel, A. Khoshakhlagh, S.A. Keo, S.B. Rafol, A.M. Fisher, B.J. Pepper, E.M. Luong, C.J. Hill, and S.D. Gunapala, SPIE Proceedings Volume 10624, Infrared Technology and Applications XLIV; 1062410 (2018).Google Scholar
  15. 15.
    D.Z. Ting, A. Khoshakhlagh, A. Soibel, C.J. Hill, and S.D. Gunapala, U.S. Patent Application 13/197,588 (2011); U.S. Patent 8,217,480 (2012).Google Scholar
  16. 16.
    E.H. Steenbergen, B.C. Connelly, G.D. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J.M. Fastenau, A.W.K. Liu, S. Elhamri, O.O. Cellek, and Y.-H. Zhang, Appl. Phys. Lett. 99, 251110 (2011).CrossRefGoogle Scholar
  17. 17.
    H.S. Kim, O.O. Cellek, Z.-Y. Lin, Z.-Y. He, X.-H. Zhao, S. Liu, H. Li, and Y.-H. Zhang, Appl. Phys. Lett. 101, 161114 (2012).CrossRefGoogle Scholar
  18. 18.
    D. Wu, Q. Durlin, A. Dehzangi, Y. Zhang, and M. Razeghi, Appl. Phys. Lett. 114, 011104 (2019).CrossRefGoogle Scholar
  19. 19.
    A. Haddadi, G. Chen, R. Chevallier, A.M. Hoang, and M. Razeghi, Appl. Phys. Lett. 105, 121104 (2014).CrossRefGoogle Scholar
  20. 20.
    A. Haddadi, A. Dehzangi, S. Adhikary, R. Chevallier, and M. Razeghi, APL Mater. 5, 035502 (2017).CrossRefGoogle Scholar
  21. 21.
    R. Chevallier, A. Haddadi, and M. Razeghi, Nat. Sci. Rep. 7, 12617 (2017).CrossRefGoogle Scholar
  22. 22.
    A.M. Hoang, G. Chen, R. Chevallier, A. Haddadi, and M. Razeghi, Appl. Phys. Lett. 104, 251105 (2014).CrossRefGoogle Scholar
  23. 23.
    A. Haddadi, R. Chevallier, G. Chen, A.M. Hoang, and M. Razeghi, Appl. Phys. Lett. 106, 011104 (2015).CrossRefGoogle Scholar
  24. 24.
    E.A. Plis, T. Schuler-Sandy, D.A. Ramirez, S. Myers, and S. Krishna, Electron. Lett. 51, 2009 (2015).CrossRefGoogle Scholar
  25. 25.
    R. Hao, Y. Ren, S. Liu, J. Guo, G. Wang, Y. Xu, and Z. Niu, J. Cryst. Growth 470, 33 (2017).CrossRefGoogle Scholar
  26. 26.
    K. Michalczewski, Ł. Kubiszyn, P. Martyniuk, C.H. Wu, J. Jureńczyk, K. Grodecki, D. Benyahia, A. Rogalski, and J. Piotrowski, Infrared Phys. Technol. 95, 222 (2018).CrossRefGoogle Scholar
  27. 27.
    D.J.P. Perez, L. Cerutti, J.B. Rodriguez, T. Cerba, T. Baron, E. Tournié, and P. Christol, Infrared Phys. Technol. 96, 39 (2019).CrossRefGoogle Scholar
  28. 28.
    M.A. Kinch, Fundamentals of Infrared Detector Materials (Bellingham: SPIE Press, 2007), p. 57.CrossRefGoogle Scholar
  29. 29.
    B.V. Olson, E.A. Shaner, J.K. Kim, J.F. Klem, S.D. Hawkins, L.M. Murray, J.P. Prineas, M.E. Flatte, and T.F. Boggess, Appl. Phys. Lett. 101, 092109 (2012).CrossRefGoogle Scholar
  30. 30.
    T. Ashley and C.T. Elliot, Electron. Lett. 21, 451 (1985).CrossRefGoogle Scholar
  31. 31.
    D. Lee, M. Carmody, E. Piquette, P. Dreiske, A. Chen, A. Yulius, D. Edwall, S. Bhargava, M. Zandian, and W.E. Tennant, J. Electron. Mater. 45, 4587 (2016).CrossRefGoogle Scholar
  32. 32.
    P.C. Klipstein, Y. Livneh, A. Glozman, S. Grossman, O. Klin, N. Snapi, and E. Weiss, J. Electron. Mater. 43, 2984 (2014).CrossRefGoogle Scholar
  33. 33.
    I. Vurgaftman, G. Belenky, Y. Lin, D. Donetsky, L. Shterengas, G. Kipshidze, W.L. Sarney, and S.P. Svensson, Appl. Phys. Lett. 108, 222101 (2016).CrossRefGoogle Scholar
  34. 34.
    D.Z. Ting, A. Soibel, and S.D. Gunapala, Appl. Phys. Lett. 108, 183504 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • David Z. Ting
    • 1
    Email author
  • Alexander Soibel
    • 1
  • Arezou Khoshakhlagh
    • 1
  • Sam A. Keo
    • 1
  • Sir B. Rafol
    • 1
  • Linda Höglund
    • 1
    • 2
  • Edward M. Luong
    • 1
  • Anita M. Fisher
    • 1
  • Cory J. Hill
    • 1
  • Sarath D. Gunapala
    • 1
  1. 1.NASA Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.IRnova ABKistaSweden

Personalised recommendations