Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

  • Progress and Challenges in Developing Electromagnetic Interference Materials
  • Open Access
  • Published:

Electromagnetic Shielding and Reflection Loss of Conductive Yarn Incorporated Woven Fabrics at the S and X Radar Bands

  • 199 Accesses


This study provides comparison of different types of conductive yarns stitched on top of the plain woven fabric via two different structures (parallel and mesh form) for electromagnetic shielding applications. Different types of structures with conductive yarns were investigated for electromagnetic shielding and reflection loss features within the S and X Radar bands. Conductive yarns; namely stainless steel, copper and silver plated polyamide yarns, having different linear resistance values were arranged evenly throughout the woven structure in parallel lines and in mesh form. The S-parameters (S11 and S21) of the woven fabrics were measured using a vector network analyzer in conjunction with a waveguide system incorporating the woven fabric samples. More specifically, the transmission line techniques with waveguides of type WR430 (WG9) and WR90 (WG16) were used; as such, the frequencies between 2.2–3.3 and 8.2–12.0 GHz were tested, respectively. Test results revealed that there is a highly varying shielding effectiveness among samples while there is also a remarkable difference with respect to shielding effectiveness between samples having mesh and parallel structure at horizontal polarizations.


  1. 1.

    I.W. Nam, H.K. Lee, and J.H. Jang, Compos. A 42, 1110 (2011).

  2. 2.

    D. Stone, J.S. Smith, and J. Lucas, Trans. Inst. Meas. Control 14, 91 (1992).

  3. 3.

    S. Geetha, K.K.S. Kumar, and C.R.K. Rao, J. Appl. Polym. Sci. 112, 2073 (2009).

  4. 4.

    R. Perumalraj, G. Nalankilli, and B.S. Dasaradan, J. Reinf. Plast. Compos. 29, 2992 (2010).

  5. 5.

    K. Rajendrakumar and G. Thilagavathi, J. Ind. Text. 42, 400 (2013).

  6. 6.

    T.W. Wieckowski and J.M. Janukiewicz, Fibres. Text. Eastern Eur. 14, 18 (2006).

  7. 7.

    M.S. Ozen, I. Usta, and A. Beyit, in Proceedings of RMUTP International Conference: Textiles & Fashion, Bangkok, Thailand (2012).

  8. 8.

    J.J. Duffy and M.W. Ranney, Noyes Data Corp (Park Ridges: Noyes, 1980).

  9. 9.

    D.H. Tsai, S.H. Kim, T.D. Corrigan, R.J. Phaneuf, and M.R. Zachariah, Nanotechnology 16, 1856 (2005).

  10. 10.

    A. Teber, I. Unver, H. Kavas, B. Aktas, and R. Bansal, J. Magn. Magn. Mater. 406, 228 (2016).

  11. 11.

    A. Oroumei, H. Tavanai, and M. Morshed, J. Electron. Mater. 40, 2256 (2011).

  12. 12.

    K. Jagatheesan, A. Ramasamy, A. Das, and A. Basu, Indian J. Fibre Text. Res. 39, 329 (2014).

  13. 13.

    K.S. Dijith, S. Pillai, and K.P. Surendran, Surf. Coat. Tech. 330, 34 (2017).

  14. 14.

    K. Jagatheesan, A. Ramasamy, A. Das, and A. Basu, J. Electron. Mater. 46, 8 (2017).

  15. 15.

    K. Jagatheesan, A. Ramasamy, A. Das, and A. Basu, J. Electron. Mater. 45, 3087 (2016).

  16. 16.

    C.I. Su and J.T. Chern, Text. Res. J. 74, 51 (2004).

  17. 17.

    A. Bedeloglu, J. Text. Inst. 104, 1247 (2013).

  18. 18.

    A. Bedeloglu, J. Text. Inst. 104, 1359 (2013).

  19. 19.

    F. Ceken, G. Pamuk, O. Kayacan, A. Ozkurt, and S. Ugurlu, J. Eng. Fibers Fabr. 7, 81 (2012).

  20. 20.

    G. Telipan, C. Morari, and B. Moasa, Bull. Transilv. Univ. Braşov Ser. I Eng. Sci. 10, 1 (2017).

  21. 21.

    F. Ceken, Ö. Kayacan, A. Özkurt, and S.Ş. Uğurlu, J. Text. Inst. 103, 968 (2012).

  22. 22.

    H.C. Chen, J.H. Lin, and K.C. Lee, J. Reinf. Plastics Comp. 27, 187 (2008).

  23. 23.

    K.B. Cheng, J. Text. Eng. 46, 42 (2000).

  24. 24.

    K.B. Cheng, S. Ramakrishna, and K.C. Lee, Compos. A 31, 1039 (2000).

  25. 25.

    R. Perumalraj and B.S. Dasaradan, Indian J. Fibre Text. Res. 34, 149 (2009).

  26. 26.

    K. Rajendrakumar and G. Thilagavathi, J. Ind. Text. 42, 400 (2013).

  27. 27.

    R. Perumalraj and B.S. Dasaradan, Fibres Text. East Europe 18, 274 (2010).

  28. 28.

    H.G. Ortlek, C. Gunesoglu, G. Okyay, and Y. Turkoglu, Tekstil ve Konf. 2, 90 (2012).

  29. 29.

    C.H. Huang, J.H. Lin, R.B. Yang, C.W. Lin, and C.W. Lou, J. Electron. Mater. 41, 2267 (2012).

  30. 30.

    M.S. Ahmad, A.M. Zihilif, E. Martuscelli, G. Ragosta, and E. Scafo, Polym. Compos. 13, 53 (1992).

  31. 31.

    E. Devaux, V. Koncar, B. Kim, C. Campagne, C. Roux, M. Rochery, and D. Saihi, Trans. Inst. Meas. Control 29, 355 (2007).

  32. 32.

    S.K. Bahadir, IEEE Sens. J. 18, 9770 (2018).

  33. 33.

    M. Subhankar, S. Kunal, D. Pulak, and S. Mrinal, J. Saf. Eng. 2, 11 (2013).

  34. 34.

    F. Caspers, in RF Engineering Basic Concepts: S-parameters, CERN 2011-007, Geneva, Switzerland, (2012), p. 60–93.

  35. 35.

    R.K. Shaw, B.R. Long, D.H. Werner, and A. Gavrin, IEEE Antennas Propag. Mag. 49, 28 (2007).

  36. 36.

    K.K. Gupta, S.M. Abbas, and A.C. Abhyankar, J. Ind. Text. 46, 510 (2016).

Download references


This Project has received funding form the European Union’s Horizon 2020 research and innovation programme under the Marie-Sklodowska-Curie Grant Agreement No. 644268. Great appreciation is also extended to Mr. Ömer Ertabak and BATI BASMA A.Ş for supplying fabrics.

Author information

Correspondence to Senem Kursun Bahadir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kursun Bahadir, S., Mitilineos, S.Α., Symeonidis, S. et al. Electromagnetic Shielding and Reflection Loss of Conductive Yarn Incorporated Woven Fabrics at the S and X Radar Bands. Journal of Elec Materi 49, 1579–1587 (2020). https://doi.org/10.1007/s11664-019-07245-z

Download citation


  • Conductive woven fabrics
  • electromagnetic shielding
  • waveguide transmission line technique
  • radar band
  • reflection loss