Advertisement

Low-Frequency Noises and DLTS Studies in HgCdTe MWIR Photodiodes

  • P. GuinedorEmail author
  • A. Brunner
  • L. Rubaldo
  • D. Bauza
  • G. Reimbold
  • D. Billon-Lanfrey
U.S. Workshop on Physics and Chemistry of II-VI Materials 2018
  • 4 Downloads
Part of the following topical collections:
  1. U.S. Workshop on Physics and Chemistry of II-VI Materials 2018

Abstract

Both low-frequency noises and electrically active defects have been investigated for two technological variants, i.e. optimized and non-optimized, of the HgCdTe p on n technology applied to the mid-wave infrared blue band with a cut-off wavelength of 4.2 μm. This has been achieved using electro-optical characterizations and the deep level transient spectroscopy (DLTS) technique. The results show that the impact of extra 1/f and random telegraph signal noises has been reduced with the optimization of the technology. Furthermore, a broadened DLTS peak, probably related to dislocations in the material, has been found for both variants, the relative amplitude of which is reduced in the optimized case. The potential correlation between low-frequency noises and this broadened peak is discussed.

Keywords

HgCdTe HOT RTS 1/f noise DLTS dislocation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    M.A. Kinch, F. Aqariden, D. Chandra, P.K. Liao, H.F. Schaake, and H.D. Shih, J. Electron. Mater. 34, 880 (2005).CrossRefGoogle Scholar
  2. 2.
    S. Tobin, S. Iwasa, and T. Tredwell, IEEE Trans. Electron. Devices 27, 43 (1980).CrossRefGoogle Scholar
  3. 3.
    S. Machlup, J. Appl. Phys. 25, 341 (1954).CrossRefGoogle Scholar
  4. 4.
    S.T. Hsu, Solid State Electron. 14, 487 (1971).CrossRefGoogle Scholar
  5. 5.
    A. Brunner, L. Rubaldo, V. Destefanis, F. Chabuel, A. Kerlain, D. Bauza, and N. Baier, J. Electron. Mater. 43, 3060 (2014).CrossRefGoogle Scholar
  6. 6.
    A.L. McWhorter, Semiconductor Surface Physics, ed. R.H. Kingston (Philadelphia: University of Pennsilvania, 1975).Google Scholar
  7. 7.
    N.F. Hooge, Phys. Lett. A 29, 139 (1969).CrossRefGoogle Scholar
  8. 8.
    A. Kerlain, A. Brunner, D. Sam-Giao, N. Pére-Laperne, L. Rubaldo, V. Destefanis, F. Rochette, and C. Cervera, J. Electron. Mater. 45, 4557 (2016).CrossRefGoogle Scholar
  9. 9.
    S. Kogan, Electronic Noise and Fluctuations in Solids, 1st ed. (New York: Cambridge University Press, 1996).CrossRefGoogle Scholar
  10. 10.
    D.V. Lang, J. Appl. Phys. 45, 3025 (1974).Google Scholar
  11. 11.
    T. Wosiński, J. Appl. Phys. 65, 1566 (1989).CrossRefGoogle Scholar
  12. 12.
    D. Cavalcoli, A. Cavallini, and E. Gombia, Phys. Rev. B 56, 10208 (1997).CrossRefGoogle Scholar
  13. 13.
    J.F. Barbot, Phys. Status Solidi (a) 124, 513 (1991).CrossRefGoogle Scholar
  14. 14.
    L. Rubaldo, A. Brunner, J. Berthoz, N. Péré-Laperne, A. Kerlain, P. Abraham, D. Bauza, G. Reimbold, and O. Gravand, J. Electron. Mater. 43, 3065 (2014).CrossRefGoogle Scholar
  15. 15.
    A. Brunner, L. Rubaldo, J. Berthoz, D. Bauza, and G. Reimbold, Low Temperature Electronics, 11th International Workshop on (2014).Google Scholar
  16. 16.
    S. Weiss and R. Kassing, J. Appl. Phys. 31, 1733 (1988).Google Scholar
  17. 17.
    W. Schröter, J. Kronewitz, U. Gnauert, F. Riedel, and M. Seibt, Phys. Rev. B 52, 13726 (1995).CrossRefGoogle Scholar
  18. 18.
    W. Schröter, V. Kveder, M. Seibt, H. Ewe, H. Hedemann, F. Riedel, and A. Sattler, Mater. Sci. Eng., B 72, 80 (2000).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.SOFRADIRVeurey-VoroizeFrance
  2. 2.IMEP-LAHC, MINATEC-INPGGrenoble CedexFrance
  3. 3.CEA-LETIGrenobleFrance

Personalised recommendations