Advertisement

Role of Nanostructured Photoanode and Counter Electrode on Efficiency Enhancement of DSSCs

  • Md. Zaved H. KhanEmail author
  • Xiuhua Liu
Article
  • 6 Downloads

Abstract

In recent years, dye-sensitized solar cells (DSSCs) have received widespread attention due to their low cost compared to conventional silicon photovoltaic cells. However, to reach optimal device efficiencies, much work is still required. Nanotechnology opens a door to creating various nanostructures and tailing materials for use in DSSCs. Here we reviewed the development in nanomaterials based on modified electrodes which utilize the advantages of high electrocatalytic ability and high surface area due to their nanostructured morphology. This review highlights recent developments in DSSCs and their key components with respect to nanostructured modification, which will provide deep insights and guidance for researchers to design and develop cost-effective and efficient DSSCs.

Keywords

Dye-sensitized solar cell nanoparticles nanostructure photo current efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    B. O’Regan and M. Grätzel, Nature 353, 737 (1991).  https://doi.org/10.1038/353737a0.CrossRefGoogle Scholar
  2. 2.
    S. Yang, Y. Huang, C. Huang, and X. Zhao, Chem. Mater. 14, 1500 (2002).  https://doi.org/10.1021/cm010609e.CrossRefGoogle Scholar
  3. 3.
    X. Zhang, Sol. Energy Mater. Sol. Cells 81, 197 (2004).  https://doi.org/10.1016/j.solmat.2003.11.005.CrossRefGoogle Scholar
  4. 4.
    F. Gong, H. Wang, and Z.-S. Wang, Phys. Chem. Chem. Phys. 13, 17676 (2011).  https://doi.org/10.1039/c1cp22542a.CrossRefGoogle Scholar
  5. 5.
    S.M.H. Hejazi, J. Aghazadeh Mohandesi, and M. Javanbakht, Sol. Energy 144, 699 (2017).  https://doi.org/10.1016/J.SOLENER.2016.11.033.CrossRefGoogle Scholar
  6. 6.
    Y. Xu, H. Zhang, X. Li, Q. Wu, W. Wang, and Z. Li, et al., Appl. Surf. Sci. 424, 245 (2017).  https://doi.org/10.1016/J.APSUSC.2017.04.210.CrossRefGoogle Scholar
  7. 7.
    M.S. Ahmad, N.A. Rahim, and A.K. Pandey, Optik (Stuttg) 157, 134 (2018).  https://doi.org/10.1016/J.IJLEO.2017.11.073.CrossRefGoogle Scholar
  8. 8.
    Q. Liu, Z.-S. Li, and S.-L. Chen, Ind. Eng. Chem. Res. 55, 455 (2016).  https://doi.org/10.1021/acs.iecr.5b03464.CrossRefGoogle Scholar
  9. 9.
    S. Carli, L. Casarin, Z. Syrgiannis, R. Boaretto, E. Benazzi, S. Caramori, M. Prato, and C.A. Bignozzi, ACS Appl. Mater. Interfaces. 8, 14604 (2016).  https://doi.org/10.1021/acsami.6b03803.CrossRefGoogle Scholar
  10. 10.
    M. Rani and S.K. Tripathi, Renew. Sustain. Energy Rev. 61, 97 (2016).  https://doi.org/10.1016/j.rser.2016.03.012.CrossRefGoogle Scholar
  11. 11.
    Y.-H. Yu, W.-F. Chi, W.-C. Huang, W.-S. Wang, C.-J. Shih, and C.-H. Tsai, Org. Electron. 31, 207 (2016).  https://doi.org/10.1016/j.orgel.2016.01.038.CrossRefGoogle Scholar
  12. 12.
    A. Pandikumar, S.-P. Lim, S. Jayabal, N.M. Huang, H.N. Lim, and R. Ramaraj, Renew. Sustain. Energy Rev. 60, 408 (2016).  https://doi.org/10.1016/j.rser.2016.01.107.CrossRefGoogle Scholar
  13. 13.
    L. Chen, W. Chen, and E. Wang, J. Power Sources 380, 18 (2018).  https://doi.org/10.1016/J.JPOWSOUR.2017.11.057.CrossRefGoogle Scholar
  14. 14.
    C.-A. Tseng, C.-P. Lee, Y.-J. Huang, H.-W. Pang, K.-C. Ho, and Y.-T. Chen, Mater Today Energy 8, 15 (2018).  https://doi.org/10.1016/j.mtener.2018.02.006.CrossRefGoogle Scholar
  15. 15.
    F. Miao, R. Miao, B. Tao, Z. Jin, J. Yu, and P.K. Chu, et al., Org. Electron. 45, 74 (2017).  https://doi.org/10.1016/J.ORGEL.2017.02.040.CrossRefGoogle Scholar
  16. 16.
    T. Mahmoudi, Y. Wang, Y.-B. Hahn. Nano Energy (2018).  https://doi.org/10.1016/j.nanoen.2018.02.047.
  17. 17.
    X. Chen, Q. Yang, Q. Meng, Z. Zhang, J. Zhang, and L. Liu, et al., Sol. Energy 144, 342 (2017).  https://doi.org/10.1016/J.SOLENER.2017.01.035.CrossRefGoogle Scholar
  18. 18.
    F.W. Low and C.W. Lai, Renew. Sustain. Energy Rev. 82, 103 (2018).  https://doi.org/10.1016/J.RSER.2017.09.024.CrossRefGoogle Scholar
  19. 19.
    B. Boro, B. Gogoi, B.M. Rajbongshi, and A. Ramchiary, Renew. Sustain. Energy Rev. 81, 2264 (2018).  https://doi.org/10.1016/J.RSER.2017.06.035.CrossRefGoogle Scholar
  20. 20.
    K. Robinson, G.R.A. Kumara, R.J.G.L.R. Kumara, E.N. Jayaweera, and R.M.G. Rajapakse, Org. Electron. 56, 159 (2018).  https://doi.org/10.1016/j.orgel.2018.01.040.CrossRefGoogle Scholar
  21. 21.
    M. Lee, S.K. Balasingam, Y. Ko, H.Y. Jeong, B.K. Min, and Y.J. Yun, et al., Synth. Met. 215, 110 (2016).  https://doi.org/10.1016/j.synthmet.2015.12.015.CrossRefGoogle Scholar
  22. 22.
    D. Sinha, D. De, and A. Ayaz, Spectrochim. Acta A Mol. Biomol. Spectrosc. 193, 467 (2018).  https://doi.org/10.1016/J.SAA.2017.12.058.CrossRefGoogle Scholar
  23. 23.
    M.A. Gaikwad, M.P. Suryawanshi, P.S. Maldar, T.D. Dongale, and A.V. Moholkar, Opt Mater (Amst) 78, 325 (2018).  https://doi.org/10.1016/j.optmat.2018.02.040.CrossRefGoogle Scholar
  24. 24.
    L. Chen, Y. Zhou, H. Dai, Z. Li, T. Yu, and J. Liu, et al., J. Mater. Chem. A 1, 11790 (2013).  https://doi.org/10.1039/c3ta12511d.CrossRefGoogle Scholar
  25. 25.
    K. Suzuki, M. Yamaguchi, M. Kumagai, and S. Yanagida, Chem. Lett. 32, 28 (2003).  https://doi.org/10.1246/cl.2003.28.CrossRefGoogle Scholar
  26. 26.
    R.A. Naphade, M. Tathavadekar, J.P. Jog, S. Agarkar, and S. Ogale, J. Mater. Chem. A 2, 975 (2014).  https://doi.org/10.1039/C3TA13246C.CrossRefGoogle Scholar
  27. 27.
    T. Battumur, S.H. Mujawar, Q.T. Truong, S.B. Ambade, D.S. Lee, and W. Lee, et al., Curr. Appl. Phys. 12, e49 (2012).  https://doi.org/10.1016/j.cap.2011.04.028.CrossRefGoogle Scholar
  28. 28.
    G. Wang, S. Zhuo, and W. Xing, Mater. Lett. 69, 27 (2012).  https://doi.org/10.1016/j.matlet.2011.11.086.CrossRefGoogle Scholar
  29. 29.
    J. Wang, J. Lin, J. Wu, M. Huang, Z. Lan, and Y. Chen, et al., Electrochim. Acta 70, 131 (2012).  https://doi.org/10.1016/j.electacta.2012.03.047.CrossRefGoogle Scholar
  30. 30.
    H. Lu, K. Deng, Z. Shi, Q. Liu, G. Zhu, and H. Fan, et al., Nanoscale Res. Lett. 9, 183 (2014).  https://doi.org/10.1186/1556-276X-9-183.CrossRefGoogle Scholar
  31. 31.
    J. Song, G.R. Li, F.Y. Xiong, and X.P. Gao, J. Mater. Chem. 22, 20580 (2012).  https://doi.org/10.1039/c2jm34878k.CrossRefGoogle Scholar
  32. 32.
    J. Bandara and U.W. Pradeep, Thin Solid Films 517, 952 (2008).  https://doi.org/10.1016/j.tsf.2008.07.031.CrossRefGoogle Scholar
  33. 33.
    M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P.D. Yang, Nat. Mater. 4, 455 (2005).  https://doi.org/10.1038/nmat1387.CrossRefGoogle Scholar
  34. 34.
    A. Yousef, M.S. Akhtar, N.A.M. Barakat, M. Motlak, O.-B. Yang, and H.Y. Kim, Electrochim. Acta 102, 142 (2013).  https://doi.org/10.1016/j.electacta.2013.04.013.CrossRefGoogle Scholar
  35. 35.
    P. Poudel and Q. Qiao, Nano Energy 4, 157 (2014).  https://doi.org/10.1016/j.nanoen.2013.10.012.CrossRefGoogle Scholar
  36. 36.
    W.-Y. Rho, D.H. Song, H.-Y. Yang, H.-S. Kim, B.S. Son, and J.S. Suh, et al., J. Solid State Chem. 258, 271 (2018).  https://doi.org/10.1016/J.JSSC.2017.10.018.CrossRefGoogle Scholar
  37. 37.
    N. Mengal, A.A. Arbab, A.A. Memon, I.A. Sahito, and S.H. Jeong, Electrochim. Acta 261, 246 (2018).  https://doi.org/10.1016/J.ELECTACTA.2017.12.109.CrossRefGoogle Scholar
  38. 38.
    H. Park, S. Chang, J. Jean, J.J. Cheng, P.T. Araujo, and M. Wang, et al., Nano Lett. 13, 233 (2013).  https://doi.org/10.1021/nl303920b.CrossRefGoogle Scholar
  39. 39.
    V.A. Tran, T.T. Truong, T.A.P. Phan, T.N. Nguyen, Huynh T. Van, and A. Agresti, et al., Appl. Surf. Sci. 399, 515 (2017).  https://doi.org/10.1016/J.APSUSC.2016.12.125.CrossRefGoogle Scholar
  40. 40.
    C. Ma, L. Wang, Z. Guo, Y. Lv, W. Chen, and H. Ming, et al., Colloids Surf. A Physicochem. Eng. Asp 538, 94 (2018).  https://doi.org/10.1016/J.COLSURFA.2017.10.089.CrossRefGoogle Scholar
  41. 41.
    K.D. Benkstein, N. Kopidakis, J. van de Lagemaat, and A.J. Frank, J. Phys. Chem. B 107, 7759 (2003).  https://doi.org/10.1021/jp022681l.CrossRefGoogle Scholar
  42. 42.
    J.B. Baxter and E.S. Aydil, Appl. Phys. Lett. 86, 53114 (2005).  https://doi.org/10.1063/1.1861510.CrossRefGoogle Scholar
  43. 43.
    K. Asagoe, Y. Suzuki, S. Ngamsinlapasathian, and S. Yoshikawa, J. Phys: Conf. Ser. 61, 1112 (2007).  https://doi.org/10.1088/1742-6596/61/1/220.CrossRefGoogle Scholar
  44. 44.
    D. Sabba, S. Agarwala, S.S. Pramana, and S. Mhaisalkar, Nanoscale Res. Lett. 9, 14 (2014).  https://doi.org/10.1186/1556-276X-9-14.CrossRefGoogle Scholar
  45. 45.
    B. Tan and Y. Wu, J Phys Chem B 110, 15932 (2006).  https://doi.org/10.1021/jp063972n.CrossRefGoogle Scholar
  46. 46.
    G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, and C.A. Grimes, Nano Lett. 6, 215 (2006).  https://doi.org/10.1021/nl052099j.CrossRefGoogle Scholar
  47. 47.
    S. Pavasupree, S. Ngamsinlapasathian, M. Nakajima, Y. Suzuki, and S. Yoshikawa, J. Photochem. Photobiol. A Chem. 184, 163 (2006).  https://doi.org/10.1016/j.jphotochem.2006.04.010.CrossRefGoogle Scholar
  48. 48.
    C.-C. Chen, H.-W. Chung, C.-H. Chen, H.-P. Lu, C.-M. Lan, and S.-F. Chen, et al., J. Phys. Chem. C 112, 19151 (2008).  https://doi.org/10.1021/jp806281r.CrossRefGoogle Scholar
  49. 49.
    Y. Ji, M. Zhang, J. Cui, K.-C. Lin, H. Zheng, and J.-J. Zhu, et al., Nano Energy 1, 796 (2012).  https://doi.org/10.1016/j.nanoen.2012.08.006.CrossRefGoogle Scholar
  50. 50.
    S.V. Nair, A. Balakrishnan, K.R.V. Subramanian, A.M. Anu, A.M. Asha, and B. Deepika, Bull. Mater. Sci. 35, 489 (2012).  https://doi.org/10.1007/s12034-012-0323-5.CrossRefGoogle Scholar
  51. 51.
    M. Paulose, K. Shankar, O.K. Varghese, G.K. Mor, and C.A. Grimes, J. Phys. D Appl. Phys. 39, 2498 (2006).  https://doi.org/10.1088/0022-3727/39/12/005.CrossRefGoogle Scholar
  52. 52.
    L. Sun, S. Zhang, X. Sun, and X. He, J. Nanosci. Nanotechnol. 10, 4551 (2010).  https://doi.org/10.1166/jnn.2010.1695.CrossRefGoogle Scholar
  53. 53.
    Y.L. Cheong, K.P. Beh, F.K. Yam, and Z. Hassan, Superlattices Microstruct. 94, 74 (2016).  https://doi.org/10.1016/j.spmi.2016.04.006.CrossRefGoogle Scholar
  54. 54.
    Y. Diamant, S.G. Chen, O. Melamed, and A. Zaban, J Phys Chem B 107, 1977 (2003).  https://doi.org/10.1021/jp027827v.CrossRefGoogle Scholar
  55. 55.
    N.R. Neale, N. Kopidakis, J. van de Lagemaat, M. Grätzel, and A.J. Frank, J Phys Chem B 109, 23183 (2005).  https://doi.org/10.1021/jp0538666.CrossRefGoogle Scholar
  56. 56.
    S.K. Park, T.K. Yun, J.Y. Bae, and Y.S. Won, Appl. Surf. Sci. 285, 789 (2013).  https://doi.org/10.1016/j.apsusc.2013.08.130.CrossRefGoogle Scholar
  57. 57.
    X. Wu, L. Wang, F. Luo, B. Ma, C. Zhan, and Y. Qiu, J. Phys. Chem. C 111, 8075 (2007).  https://doi.org/10.1021/jp0706533.CrossRefGoogle Scholar
  58. 58.
    J. Xu, G. Wang, J. Fan, B. Liu, S. Cao, and J. Yu, J. Power Sources 274, 77 (2015).  https://doi.org/10.1016/j.jpowsour.2014.10.033.CrossRefGoogle Scholar
  59. 59.
    J.T. Kim, C. Kim, S.J. Lee, S.W. Jeong, and Y.S. Han, Appl. Surf. Sci. 333, 704 (2015).  https://doi.org/10.1016/j.apsusc.2015.01.227.CrossRefGoogle Scholar
  60. 60.
    S. Dadgostar, F. Tajabadi, and N. Taghavinia, ACS Appl. Mater. Interfaces. 4, 2964 (2012).  https://doi.org/10.1021/am300329p.CrossRefGoogle Scholar
  61. 61.
    J. Lin, M. Guo, C.T. Yip, W. Lu, G. Zhang, and X. Liu, et al., Adv. Funct. Mater. 23, 5952 (2013).  https://doi.org/10.1002/adfm.201301066.CrossRefGoogle Scholar
  62. 62.
    J. Lin, X. Liu, M. Guo, W. Lu, G. Zhang, and L. Zhou, et al., Nanoscale 4, 5148 (2012).  https://doi.org/10.1039/c2nr31268a.CrossRefGoogle Scholar
  63. 63.
    X. Liu, J. Lin, and X. Chen, RSC Adv 3, 4885 (2013).  https://doi.org/10.1039/c3ra40221e.CrossRefGoogle Scholar
  64. 64.
    Y.-C. Park, Y.-J. Chang, B.-G. Kum, E.-H. Kong, J.Y. Son, and Y.S. Kwon, et al., J. Mater. Chem. 21, 9582 (2011).  https://doi.org/10.1039/c1jm11043h.CrossRefGoogle Scholar
  65. 65.
    J.-H. Yoon, S.-R. Jang, R. Vittal, J. Lee, and K.-J. Kim, J Photochem Photobiol A Chem 180, 184 (2006).  https://doi.org/10.1016/j.jphotochem.2005.10.013.CrossRefGoogle Scholar
  66. 66.
    M.A.K.L. Dissanayake, H.K.D.W.M.N. Divarathna, C.B. Dissanayake, G.K.R. Senadeera, P.M.P.C. Ekanayake, and C.A. Thotawattage, J. Photochem. Photobiol. A Chem. 322, 110 (2016).  https://doi.org/10.1016/j.jphotochem.2016.02.017.CrossRefGoogle Scholar
  67. 67.
    M. Iraj, F.D. Nayeri, E. Asl-Soleimani, and K. Narimani, J. Alloys Compd. 659, 44 (2016).  https://doi.org/10.1016/j.jallcom.2015.11.004.CrossRefGoogle Scholar
  68. 68.
    F.-I. Lai, J.-F. Yang, and S.-Y. Kuo, Materials (Basel) 8, 8860 (2015).  https://doi.org/10.3390/ma8125499.CrossRefGoogle Scholar
  69. 69.
    Q. Ma and Y.M. Huang, Mater. Lett. 148, 171 (2015).  https://doi.org/10.1016/J.MATLET.2015.02.085.CrossRefGoogle Scholar
  70. 70.
    H.-T. Chou and H.-C. Hsu, Solid State Electron. 116, 15 (2016).  https://doi.org/10.1016/J.SSE.2015.11.004.CrossRefGoogle Scholar
  71. 71.
    Y.-F. Wang, W.-X. Zhao, X.-F. Li, and D.-J. Li, Electrochim. Acta 151, 399 (2015).  https://doi.org/10.1016/J.ELECTACTA.2014.11.059.CrossRefGoogle Scholar
  72. 72.
    F. Al-juaid, A. Merazga, A. Al-Baradi, and F. Abdel-wahab, Solid State Electron. 87, 98 (2013).  https://doi.org/10.1016/J.SSE.2013.06.007.CrossRefGoogle Scholar
  73. 73.
    C.-S. Chou, F.-C. Chou, and J.-Y. Kang, Powder Technol. 215–216, 38 (2012).  https://doi.org/10.1016/J.POWTEC.2011.09.003.CrossRefGoogle Scholar
  74. 74.
    S.K. Tripathi, M. Rani, and N. Singh, Electrochim. Acta 167, 179 (2015).  https://doi.org/10.1016/J.ELECTACTA.2015.02.245.CrossRefGoogle Scholar
  75. 75.
    Q. Xu, F. Liu, Y. Liu, K. Cui, X. Feng, and W. Zhang, et al., Sci Rep 3, 2112 (2013).  https://doi.org/10.1038/srep02112.CrossRefGoogle Scholar
  76. 76.
    M. Sharma, P.R. Pudasaini, F. Ruiz-Zepeda, E. Vinogradova, and A.A. Ayon, ACS Appl. Mater. Interfaces. 6, 15472 (2014).  https://doi.org/10.1021/am5040939.CrossRefGoogle Scholar
  77. 77.
    S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, and M.-K. Seo, et al., ACS Nano 8, 3302 (2014).  https://doi.org/10.1021/nn500222q.CrossRefGoogle Scholar
  78. 78.
    J. Deng, J. Du, Y. Wang, Y. Tu, and J. Di, Electrochem. Commun. 13, 1517 (2011).  https://doi.org/10.1016/j.elecom.2011.10.010.CrossRefGoogle Scholar
  79. 79.
    M.A. Al-Azawi, N. Bidin, M. Bououdina, and S.M. Mohammad, Sol. Energy 126, 93 (2016).  https://doi.org/10.1016/j.solener.2015.12.043.CrossRefGoogle Scholar
  80. 80.
    O. Amiri, M. Salavati-Niasari, M. Farangi, M. Mazaheri, and S. Bagheri, Electrochim. Acta 152, 101 (2015).  https://doi.org/10.1016/j.electacta.2014.11.105.CrossRefGoogle Scholar
  81. 81.
    Y. Dou, F. Wu, L. Fang, G. Liu, C. Mao, and K. Wan, et al., J. Power Sour. 307, 181 (2016).  https://doi.org/10.1016/j.jpowsour.2015.12.113.CrossRefGoogle Scholar
  82. 82.
    K. Hongsith, N. Hongsith, D. Wongratanaphisan, A. Gardchareon, S. Phadungdhitidhada, and P. Singjai, et al., Thin Solid Films 539, 260 (2013).  https://doi.org/10.1016/j.tsf.2013.04.150.CrossRefGoogle Scholar
  83. 83.
    L. Li, C. Xu, Y. Zhao, and K.J. Ziegler, Sol. Energy 132, 214 (2016).  https://doi.org/10.1016/j.solener.2016.03.018.CrossRefGoogle Scholar
  84. 84.
    M. Luoshan, L. Bai, C. Bu, X. Liu, Y. Zhu, and K. Guo, et al., J. Power Sour. 307, 468 (2016).  https://doi.org/10.1016/j.jpowsour.2016.01.028.CrossRefGoogle Scholar
  85. 85.
    F. Meng, Y. Luo, Y. Zhou, J. Zhang, Y. Zheng, and G. Cao, et al., J. Power Sourc. 316, 207 (2016).  https://doi.org/10.1016/j.jpowsour.2016.03.032.CrossRefGoogle Scholar
  86. 86.
    Y.-C. Yen, P.-H. Chen, J.-Z. Chen, J.-A. Chen, and K.-J. Lin, ACS Appl. Mater. Interfaces. 7, 1892 (2015).  https://doi.org/10.1021/am507668j.CrossRefGoogle Scholar
  87. 87.
    H.-J. Koo, Y.J. Kim, Y.H. Lee, W.I. Lee, K. Kim, and N.-G. Park, Adv. Mater. 20, 195 (2008).  https://doi.org/10.1002/adma.200700840.CrossRefGoogle Scholar
  88. 88.
    D. Zhang, M. Wang, A.G. Brolo, J. Shen, X. Li, and S. Huang, J. Phys. D Appl. Phys. 46, 24005 (2013).  https://doi.org/10.1088/0022-3727/46/2/024005.CrossRefGoogle Scholar
  89. 89.
    W.-L. Liu, F.-C. Lin, Y.-C. Yang, C.-H. Huang, S. Gwo, and M.H. Huang, et al., Nanoscale 5, 7953 (2013).  https://doi.org/10.1039/c3nr02800c.CrossRefGoogle Scholar
  90. 90.
    F.D. Nayeri, E. Akbarnejad, M. Ghoranneviss, E.A. Soleimani, and S.A. Hashemizadeh, Superlattices Microstruct. 91, 244 (2016).  https://doi.org/10.1016/j.spmi.2015.12.002.CrossRefGoogle Scholar
  91. 91.
    R. Ruess, S. Haas, A. Ringleb, and D. Schlettwein, Electrochim. Acta 258, 591 (2017).  https://doi.org/10.1016/J.ELECTACTA.2017.11.102.CrossRefGoogle Scholar
  92. 92.
    D. Sinha, D. De, D. Goswami, and A. Ayaz, Mater Today Proc 5, 2056 (2018).  https://doi.org/10.1016/J.MATPR.2017.09.201.CrossRefGoogle Scholar
  93. 93.
    M.-H. Jung, Mater. Chem. Phys. 202, 234 (2017).  https://doi.org/10.1016/J.MATCHEMPHYS.2017.09.034.CrossRefGoogle Scholar
  94. 94.
    Q. Liu, Y. Wei, M.Z. Shahid, M. Yao, B. Xu, and G. Liu, et al., J. Power Sources 380, 142 (2018).  https://doi.org/10.1016/J.JPOWSOUR.2018.01.089.CrossRefGoogle Scholar
  95. 95.
    J. Dou, Y. Li, F. Xie, T.J. Chow, and M. Wei, Sol. Energy 155, 1 (2017).  https://doi.org/10.1016/J.SOLENER.2017.06.016.CrossRefGoogle Scholar
  96. 96.
    W.K. Tan, T. Ito, G. Kawamura, H. Muto, Z. Lockman, and A. Matsuda, Mater Today Commun 13, 354 (2017).  https://doi.org/10.1016/J.MTCOMM.2017.11.004.CrossRefGoogle Scholar
  97. 97.
    Y. Meng, Y. Lin, and Y. Lin, Ceram. Int. 40, 1693 (2014).  https://doi.org/10.1016/j.ceramint.2013.07.065.CrossRefGoogle Scholar
  98. 98.
    M.-Y. Lu, C.-Y. Tsai, H.-A. Chen, Y.-T. Liang, K.-P. Chen, and S. Gradečak, et al., Nano Energy 20, 264 (2016).  https://doi.org/10.1016/j.nanoen.2015.12.026.CrossRefGoogle Scholar
  99. 99.
    Y. Li, K. Pan, G. Wang, B. Jiang, C. Tian, and W. Zhou, et al., Dalton Trans. 42, 7971 (2013).  https://doi.org/10.1039/c3dt32964j.CrossRefGoogle Scholar
  100. 100.
    X.-H. Lu, Y.-Z. Zheng, S.-Q. Bi, J.-X. Zhao, X. Tao, and J.-F. Chen, J. Power Sources 243, 588 (2013).  https://doi.org/10.1016/j.jpowsour.2013.06.058.CrossRefGoogle Scholar
  101. 101.
    G.-B. Shan and G.P. Demopoulos, Adv. Mater. 22, 4373 (2010).  https://doi.org/10.1002/adma.201001816.CrossRefGoogle Scholar
  102. 102.
    J. Wu, J. Wang, J. Lin, Z. Lan, Q. Tang, M. Huang, Y. Huang, L. Fan, Q. Li, and X. Tang, Adv. Energy Mater. 2012, 78 (2012).  https://doi.org/10.1002/aenm.201100531.CrossRefGoogle Scholar
  103. 103.
    F. Gong, H. Wang, X. Xu, G. Zhou, and Z.-S. Wang, J. Am. Chem. Soc. 134, 10953 (2012).  https://doi.org/10.1021/ja303034w.CrossRefGoogle Scholar
  104. 104.
    X.-J. Sang, J.-S. Li, L.-C. Zhang, Z.-M. Zhu, W.-L. Chen, and Y.-G. Li, et al., Chem. Commun. (Camb.) 50, 14678 (2014).  https://doi.org/10.1039/c4cc06211f.CrossRefGoogle Scholar
  105. 105.
    Z. Shi, K. Deng, and L. Li, Sci Rep 5, 9317 (2015).  https://doi.org/10.1038/srep09317.CrossRefGoogle Scholar
  106. 106.
    M. Batmunkh, M.J. Biggs, and J.G. Shapter, Small 11, 2963 (2015).  https://doi.org/10.1002/smll.201403155.CrossRefGoogle Scholar
  107. 107.
    H. Elbohy, A. Aboagye, S. Sigdel, Q. Wang, M.H. Sayyad, and L. Zhang, et al., J Mater Chem A 3, 17721 (2015).  https://doi.org/10.1039/C5TA04061B.CrossRefGoogle Scholar
  108. 108.
    X. Ma, H. Elbohy, S. Sigdel, C. Lai, Q. Qiao, and H. Fong, RSC Adv 6, 11481 (2016).  https://doi.org/10.1039/C5RA23856K.CrossRefGoogle Scholar
  109. 109.
    G. Wang, J. Zhang, S. Kuang, and S. Zhuo, Mater. Sci. Semicond. Process. 38, 234 (2015).  https://doi.org/10.1016/j.mssp.2015.04.025.CrossRefGoogle Scholar
  110. 110.
    Y. Duan, Q. Tang, B. He, Z. Zhao, L. Zhu, and L. Yu, J. Power Sources 284, 349 (2015).  https://doi.org/10.1016/j.jpowsour.2015.03.045.CrossRefGoogle Scholar
  111. 111.
    J. Liu, Y. Meng, B. Chen, Z. Zhou, Y. Ma, and F. Lv, et al., Acta Physiol. Plant. 37, 79 (2015).  https://doi.org/10.1007/s11738-015-1824-9.CrossRefGoogle Scholar
  112. 112.
    C.-R. Ke, C.-C. Chang, and J.-M. Ting, J. Power Sources 284, 489 (2015).  https://doi.org/10.1016/j.jpowsour.2015.03.077.CrossRefGoogle Scholar
  113. 113.
    K. Sun, S. Zhang, P. Li, Y. Xia, X. Zhang, and D. Du, et al., J. Mater. Sci.: Mater. Electron. 26, 4438 (2015).  https://doi.org/10.1007/s10854-015-2895-5.CrossRefGoogle Scholar
  114. 114.
    T.N. Murakami, S. Ito, Q. Wang, M.K. Nazeeruddin, T. Bessho, and I. Cesar, et al., J. Electrochem. Soc. 153, A2255 (2006).  https://doi.org/10.1149/1.2358087.CrossRefGoogle Scholar
  115. 115.
    Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, and H. Li, et al., Electrochem. Commun. 9, 596 (2007).  https://doi.org/10.1016/j.elecom.2006.10.028.CrossRefGoogle Scholar
  116. 116.
    E. Ramasamy, W.J. Lee, D.Y. Lee, and J.S. Song, Appl. Phys. Lett. 90, 173103 (2007).  https://doi.org/10.1063/1.2731495.CrossRefGoogle Scholar
  117. 117.
    W.J. Lee, E. Ramasamy, D.Y. Lee, and J.S. Song, J. Photochem. Photobiol. A Chem. 194, 27 (2008).  https://doi.org/10.1016/j.jphotochem.2007.07.010.CrossRefGoogle Scholar
  118. 118.
    E. Ramasamy, W.J. Lee, D.Y. Lee, and J.S. Song, Electrochem. Commun. 10, 1087 (2008).  https://doi.org/10.1016/j.elecom.2008.05.013.CrossRefGoogle Scholar
  119. 119.
    C.-S. Chou, R.-Y. Yang, M.-H. Weng, and C.-I. Huang, Adv. Powder Technol. 20, 310 (2009).  https://doi.org/10.1016/j.apt.2008.12.002.CrossRefGoogle Scholar
  120. 120.
    H. Bi, W. Zhao, S. Sun, H. Cui, T. Lin, and F. Huang, et al., Carb. N Y 61, 116 (2013).  https://doi.org/10.1016/j.carbon.2013.04.075.CrossRefGoogle Scholar
  121. 121.
    J.-Y. Lin, J.-H. Liao, and T.-Y. Hung, Electrochem. Commun. 13, 977 (2011).  https://doi.org/10.1016/j.elecom.2011.06.016.CrossRefGoogle Scholar
  122. 122.
    Y.-S. Wei, Q.-Q. Jin, and T.-Z. Ren, Solid State Electron. 63, 76 (2011).  https://doi.org/10.1016/j.sse.2011.05.019.CrossRefGoogle Scholar
  123. 123.
    J.D. Roy-Mayhew, D.J. Bozym, C. Punckt, and I.A. Aksay, ACS Nano 4, 6203 (2010).  https://doi.org/10.1021/nn1016428.CrossRefGoogle Scholar
  124. 124.
    C.-A. Lin, C.-P. Lee, S.-T. Ho, T.-C. Wei, Y.-W. Chi, and K.P. Huang, et al., ACS Photon. 1, 1264 (2014).  https://doi.org/10.1021/ph500219r.CrossRefGoogle Scholar
  125. 125.
    W. Hong, Y. Xu, G. Lu, C. Li, G. Shi. Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells, vol. 10 (2008).  https://doi.org/10.1016/j.elecom.2008.08.007.
  126. 126.
    J. Chen, K. Li, Y. Luo, X. Guo, D. Li, and M. Deng, et al., Carb. N Y 47, 2704 (2009).  https://doi.org/10.1016/j.carbon.2009.05.028.CrossRefGoogle Scholar
  127. 127.
    B. Anothumakkool, I. Agrawal, S.N. Bhange, R. Soni, O. Game, and S.B. Ogale, et al., ACS Appl. Mater. Interfaces. 8, 553 (2016).  https://doi.org/10.1021/acsami.5b09579.CrossRefGoogle Scholar
  128. 128.
    J.-Y. Lin, J.-H. Liao, and T.-C. Wei, Electrochem. Solid-State Lett. 14, D41 (2011).  https://doi.org/10.1149/1.3533917.CrossRefGoogle Scholar
  129. 129.
    I.-T. Chiu, C.-T. Li, C.-P. Lee, P.-Y. Chen, Y.-H. Tseng, and R. Vittal, et al., Nano Energy 22, 594 (2016).  https://doi.org/10.1016/j.nanoen.2016.02.060.CrossRefGoogle Scholar
  130. 130.
    K. Wu, L. Chen, C. Duan, J. Gao, and M. Wu, Mater. Des. 104, 298 (2016).  https://doi.org/10.1016/j.matdes.2016.04.100.CrossRefGoogle Scholar
  131. 131.
    M. Motlak, N.A.M. Barakat, A.G. El-Deen, A.M. Hamza, M. Obaid, and O.B. Yang, et al., Appl. Catal. A Gen. 501, 41 (2014).  https://doi.org/10.1016/j.apcata.2015.04.030.CrossRefGoogle Scholar
  132. 132.
    H. Seo, M.K. Son, N. Itagaki, K. Koga, and M. Shiratani, J. Power Sour. 307, 25 (2016).  https://doi.org/10.1016/j.jpowsour.2015.12.112.CrossRefGoogle Scholar
  133. 133.
    H.-Y. Chen, J.-Y. Liao, B.-X. Lei, D.-B. Kuang, Y. Fang, and C.-Y. Su, Chem. Asian J. 7, 1795 (2012).  https://doi.org/10.1002/asia.201200144.CrossRefGoogle Scholar
  134. 134.
    Y. Xiao, G. Han, R. Wu, Y. Li, and M. Li, Electrochim. Acta 174, 770 (2015).  https://doi.org/10.1016/j.electacta.2015.06.078.CrossRefGoogle Scholar
  135. 135.
    H. Ma, J. Tian, S. Bai, X. Liu, and Z. Shan, Electrochim. Acta 137, 138 (2014).  https://doi.org/10.1016/J.ELECTACTA.2014.06.022.CrossRefGoogle Scholar
  136. 136.
    Y. Xiao, G. Han, Y. Li, M. Li, and J.-Y. Lin, J. Power Sour. 278, 149 (2015).  https://doi.org/10.1016/J.JPOWSOUR.2014.12.068.CrossRefGoogle Scholar
  137. 137.
    M. Zheng, J. Huo, B. Chen, Y. Tu, J. Wu, and L. Hu, et al., Sol. Energy 122, 727 (2015).  https://doi.org/10.1016/J.SOLENER.2015.10.001.CrossRefGoogle Scholar
  138. 138.
    J.S. Kim, V.D. Dao, L.L. Larina, and H.S. Choi, J. Alloys Compd. 682, 706 (2016).  https://doi.org/10.1016/j.jallcom.2016.05.030.CrossRefGoogle Scholar
  139. 139.
    E. Park, Y. Lee, V.D. Dao, N.T.D. Cam, and H.S. Choi, Synth. Met. 230, 97 (2017).  https://doi.org/10.1016/j.synthmet.2017.06.002.CrossRefGoogle Scholar
  140. 140.
    M. Motlak, N.A.M. Barakat, A.G. El-Deen, A.M. Hamza, M. Obaid, and O.-B. Yang, et al., Appl. Catal. A Gen. 501, 41 (2015).  https://doi.org/10.1016/j.apcata.2015.04.030.CrossRefGoogle Scholar
  141. 141.
    K.H. Bae, E. Park, V.D. Dao, and H.S. Choi, J. Alloys Compd. 702, 449 (2017).  https://doi.org/10.1016/j.jallcom.2017.01.252.CrossRefGoogle Scholar
  142. 142.
    L.-L. Shao, M. Chen, T.-Z. Ren, and Z.-Y. Yuan, J. Power Sour. 274, 791 (2015).  https://doi.org/10.1016/j.jpowsour.2014.10.107.CrossRefGoogle Scholar
  143. 143.
    Y. Li, H. Wang, Q. Feng, G. Zhou, and Z.-S. Wang, ACS Appl. Mater. Interfaces. 5, 8217 (2013).  https://doi.org/10.1021/am402353m.CrossRefGoogle Scholar
  144. 144.
    Z. Li, F. Gong, G. Zhou, and Z.-S. Wang, J. Phys. Chem. C 117, 6561 (2013).  https://doi.org/10.1021/jp401032c.CrossRefGoogle Scholar
  145. 145.
    Y. Xiao, J. Wu, J. Lin, G. Yue, J. Lin, and M. Huang, et al., J. Mater. Chem. A 1, 13885 (2013).  https://doi.org/10.1039/c3ta12972a.CrossRefGoogle Scholar
  146. 146.
    G. Yue, J. Wu, J.-Y. Lin, Y. Xiao, S.-Y. Tai, and J. Lin, et al., Carb. N Y 55, 1 (2013).  https://doi.org/10.1016/j.carbon.2012.10.045.CrossRefGoogle Scholar
  147. 147.
    J. Gong, K. Sumathy, Q. Qiao, and Z. Zhou, Renew. Sustain. Energy Rev. 68, 234 (2017).  https://doi.org/10.1016/J.RSER.2016.09.097.CrossRefGoogle Scholar
  148. 148.
    V.H.V. Quy, E. Vijayakumar, P. Ho, J.-H. Park, J.A. Rajesh, and J. Kwon, et al., Electrochim. Acta 260, 716 (2018).  https://doi.org/10.1016/J.ELECTACTA.2017.12.023.CrossRefGoogle Scholar
  149. 149.
    M.Z. Iqbal and S. Khan, Sol. Energy 160, 130 (2018).  https://doi.org/10.1016/J.SOLENER.2017.11.060.CrossRefGoogle Scholar
  150. 150.
    R. Bajpai, S. Roy, N. Kulshrestha, J. Rafiee, N. Koratkar, and D.S. Misra, Nanoscale 4, 926 (2012).  https://doi.org/10.1039/c2nr11127f.CrossRefGoogle Scholar
  151. 151.
    Y.Y. Dou, G.R. Li, J. Song, and X.P. Gao, Phys. Chem. Chem. Phys. 14, 1339 (2012).  https://doi.org/10.1039/c2cp23775j.CrossRefGoogle Scholar
  152. 152.
    J. Velten, A.J. Mozer, D. Li, D. Officer, G. Wallace, and R. Baughman, et al., Nanotechnology 23, 85201 (2012).  https://doi.org/10.1088/0957-4484/23/8/085201.CrossRefGoogle Scholar
  153. 153.
    R. Afeesh, N.A.M. Barakat, S.S. Al-Deyab, A. Yousef, and H.Y. Kim, Colloids Surf. A Physicochem. Eng. Asp. 409, 21 (2012).  https://doi.org/10.1016/j.colsurfa.2012.05.021.CrossRefGoogle Scholar
  154. 154.
    N.A.M. Barakat and M. Motlak, Appl. Catal. B Environ. 154–155, 221 (2014).  https://doi.org/10.1016/j.apcatb.2014.02.019.CrossRefGoogle Scholar
  155. 155.
    N.A.M. Barakat, M. Motlak, A.A. Elzatahry, K.A. Khalil, and E.A.M. Abdelghani, Int. J. Hydrog. Energy 39, 305 (2014).  https://doi.org/10.1016/j.ijhydene.2013.10.061.CrossRefGoogle Scholar
  156. 156.
    H. Cai, Q. Tang, B. He, and P. Li, J. Power Sour. 258, 117 (2014).  https://doi.org/10.1016/J.JPOWSOUR.2014.02.022.CrossRefGoogle Scholar
  157. 157.
    O. Omelianovych, V.-D. Dao, L.L. Larina, and H.-S. Choi, Electrochim. Acta 211, 842 (2016).  https://doi.org/10.1016/J.ELECTACTA.2016.06.094.CrossRefGoogle Scholar
  158. 158.
    K. Ramasamy, B. Tien, P.S. Archana, and A. Gupta, Mater. Lett. 124, 227 (2014).  https://doi.org/10.1016/J.MATLET.2014.03.046.CrossRefGoogle Scholar
  159. 159.
    V.-D. Dao, Y. Choi, K. Yong, L.L. Larina, O. Shevaleevskiy, and H.-S. Choi, J. Power Sour. 274, 831 (2015).  https://doi.org/10.1016/J.JPOWSOUR.2014.10.095.CrossRefGoogle Scholar
  160. 160.
    Z. Zhang, Y. Yang, J. Gao, S. Xiao, C. Zhou, and D. Pan, et al., Mater Today Energy 7, 27 (2018).  https://doi.org/10.1016/J.MTENER.2017.11.005.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringJessore University of Science and TechnologyJessoreBangladesh
  2. 2.Key Laboratory of Natural Medicine and Immune Engineering of Henan Province, College of Chemistry and Chemical EngineeringHenan UniversityKaifengChina

Personalised recommendations