Effects of Structural Modification on Vibrational Modes, Electronic Transitions, and Bandgap of Bi1−xBaxFeO3 (0 ≤ x ≤ 0.30) System

  • Shahzad HussainEmail author
  • F. A. Khan
  • M. Aftab
  • M. Waseem
  • Saif Ullah Awan


BiFeO3 is a very promising material for future technical applications. The effects of the different size and valance state of Bi3+ and Ba2+ as A-site cations in BiFeO3 (BFO) has been studied. The introduction of large-size Ba ions at Bi site resulted in significant lattice strain and a partial structural phase transformation from rhombohedral R3c to cubic \( Pm\bar{3}m \) phase. Significant changes in the Raman spectrum, including variation in intensities and full-width at half-maxima, shifts in peak positions, and overlapping of Raman modes, were observed on incorporation of Ba into the lattice. The overlapping of various Raman modes for Ba-doped compositions confirmed the structural transformation. The decrease in intensity of A modes can be ascribed to replacement of Bi by Ba atoms, while the softening of E modes indicates presence of oxygen vacancies and suggests substantial changes in and destabilization of FeO6 octahedra. Destabilization of FeO6 octahedra was confirmed by Fourier-transform infrared spectroscopy. Optical spectra showed the presence of charge transfer and doubly degenerate dd transitions. A slight red-shift in the dd transition was observed, attributed to variation in the crystal field strength. The bandgap increased with increasing Ba incorporation, which is related to weakening of dipolar moments due to the structural transformation from a noncentrosymmetric to centrosymmetric structure. Such better understanding of the mechanisms governing the optical response of BFO could enable researchers to engineer the bandgap and conductivity for enhanced photoferroelectric properties.


Multiferroics structural transformation phonon modes dd transitions bandgap variation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    W. Eerenstein, N.D. Mathur, and J.F. Scott, Nature 442, 759 (2006).CrossRefGoogle Scholar
  2. 2.
    G. Catalan and J.F. Scott, Adv. Mater. 21, 2463 (2009).CrossRefGoogle Scholar
  3. 3.
    N.A. Spaldin and M. Fiebig, Science 309, 391 (2005).CrossRefGoogle Scholar
  4. 4.
    Y.P. Wang, L. Zhao, M.F. Zhang, X.Y. Cheng, J.-M. Liu, and Z.G. Liu, Appl. Phys. Lett. 84, 1731 (2004).CrossRefGoogle Scholar
  5. 5.
    I.P.S.V.S. Filipeev, E.G. Fesenko, and I.I. Belyaev, Sov. Phys. Crystallogr. 5, 913 (1960).Google Scholar
  6. 6.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagrajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, and D.G. Schlom, Science 299, 1719 (2003).CrossRefGoogle Scholar
  7. 7.
    C. Ederer and N.A. Spaldin, Phys. Rev. B 71, 060401 (2005).CrossRefGoogle Scholar
  8. 8.
    S. Hussain, S.K. Hasanain, G.H. Jaffari, S. Faridi, F. Rehman, T.A. Abbas, and S.I. Shah, J. Am. Ceram. Soc. 96, 3141 (2013).Google Scholar
  9. 9.
    R. Palai, R.S. Katiar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. Catalan, and J.F. Scott, Phys. Rev. B 77, 014110 (2008).CrossRefGoogle Scholar
  10. 10.
    S. Hussain, S.K. Hasanain, G.H. Jaffari, N.Z. Ali, M. Siddique, and S.I. Shah, J. Alloys Compd. 622, 8 (2015).CrossRefGoogle Scholar
  11. 11.
    T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, and S.S. Wong, Nano Lett. 7, 766 (2007).CrossRefGoogle Scholar
  12. 12.
    C.L. Yuan and S.W. Or, Appl. Phys. Lett. 89, 052905 (2006).CrossRefGoogle Scholar
  13. 13.
    V.A. Khomchenko, D.A. Kiselev, J.M. Vieira, A.L. Kholkin, M.A. Sá, and Y.G. Pogorelov, Appl. Phys. Lett. 90, 242901 (2007).CrossRefGoogle Scholar
  14. 14.
    Y. Wu and X. Yang, Appl. Phys. Lett. 91, 094104 (2007).CrossRefGoogle Scholar
  15. 15.
    S.K. Srivastav and N.S. Gajbhiye, J. Am. Ceram. Soc. 95, 3678 (2012).CrossRefGoogle Scholar
  16. 16.
    J. Chaigneau, R. Haumont, and J.M. Kiat, Phys. Rev. B 80, 184107 (2009).CrossRefGoogle Scholar
  17. 17.
    G. Hassnain Jaffari, A. Samad, A.M. Iqbal, S. Hussain, A. Mumtaz, M.S. Awan, M. Siddique, and S.I. Shah, J. Alloys Compd. 644, 893 (2015).CrossRefGoogle Scholar
  18. 18.
    R. Haumont, J. Kreisel, P. Bouvier, and F. Hippert, Phys. Rev. B 73, 132101 (2006).CrossRefGoogle Scholar
  19. 19.
    J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, and K.M. Rabe, Phys. Rev. B 71, 014113 (2005).CrossRefGoogle Scholar
  20. 20.
    K.S.M.a.S.J.L.K.D. Rout, J. Raman. Spectrosc. 40, 618 (2009).CrossRefGoogle Scholar
  21. 21.
    C. Zhang, D. Xie, J. Xu, Y. Sun, Y. Zang, X. Zhang, and X. Gao, J. Adv. Dielect. 5, 1550025 (2015).CrossRefGoogle Scholar
  22. 22.
    P. Hermet, M. Goffinet, J. Kreisel, and Ph. Ghosez, Phys. Rev. B 75, 220102(R) (2007).CrossRefGoogle Scholar
  23. 23.
    G.L. Yuan, S. Wing, and H.L.W. Chan, J. Appl. Phys. 101, 064101 (2007).CrossRefGoogle Scholar
  24. 24.
    H. Fukumura, H. Harima, K. Kisoda, M. Tamada, Y. Noguchi, and M. Miyayama, J. Magn. Magn. Mater. 310, E367 (2007).CrossRefGoogle Scholar
  25. 25.
    M.K. Singh, H.M. Jang, S. Ryu, and M.H. Jo, Appl. Phys. Lett. 88, 042907 (2006).CrossRefGoogle Scholar
  26. 26.
    M. Muneeswaran and N.V. Giridharan, J. Appl. Phys. 115, 214109 (2014).CrossRefGoogle Scholar
  27. 27.
    W. Mao, W. Chen, X. Wang, Y. Zhu, Y. Ma, H. Xue, L. Chu, J. Yang, X.A. Li, and W. Huang, Ceram. Int. 42, 12838 (2016).CrossRefGoogle Scholar
  28. 28.
    S. Thakur, O.P. Pandey, and K. Singh, J. Mol. Struct. 1074, 186 (2014).CrossRefGoogle Scholar
  29. 29.
    M. Ramirez, A. Kumar, S. Denev, N.J. Podraza, X.S. Xu, R. Rai, Y. Chu, J. Seidel, L.W. Martin, S.Y. Yang, E. Saiz, J. Ihlefeld, S. Lee, J. Klug, S. Cheong, M. Bedzyk, O. Auciello, D. Schlom, R. Ramesh, J. Orenstein, J. Musfeldt, and V. Gopalan, Phys. Rev. B 79, 224106 (2009).CrossRefGoogle Scholar
  30. 30.
    R.V. Pisarev, A.S. Moskvin, A. Kalashnikova, and T. Rasing, Phys. Rev. B 79, 235128 (2009).CrossRefGoogle Scholar
  31. 31.
    S.J. Park and J. Robertson, Appl. Phys. Lett. 90, 132903 (2007).CrossRefGoogle Scholar
  32. 32.
    O. Laporte and W.F. Meggers, J. Opt. Soc. Am. 11, 459 (1925).CrossRefGoogle Scholar
  33. 33.
    S. Hussain and S.K. Hasanain, J. Alloys Compd. 688, 1151 (2016).CrossRefGoogle Scholar
  34. 34.
    S. Gómez-Salces, F. Aguado, F. Rodríguez, R. Valiente, J. González, R. Haumont, and J. Kreisel, Phys. Rev. B 85, 144109 (2012).CrossRefGoogle Scholar
  35. 35.
    A. Mukherjee, S.M. Hossain, M. Pal, and S. Basu, Appl. Nanosci. 2, 305 (2012).CrossRefGoogle Scholar
  36. 36.
    C. Shang, B. Xu, X. Lei, S. Yu, D. Chen, M. Wu, B. Sun, G. Liu, and C. Ouyang, Phys. Chem. Chem. Phys. 20, 20919 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Shahzad Hussain
    • 1
    Email author
  • F. A. Khan
    • 2
  • M. Aftab
    • 3
  • M. Waseem
    • 4
  • Saif Ullah Awan
    • 5
  1. 1.Magnetism Laboratory, Department of PhysicsCOMSATS University IslamabadIslamabadPakistan
  2. 2.Department of PhysicsBangladesh University of Engineering and Technology (BUET)DhakaBangladesh
  3. 3.Department of PhysicsGovernment Postgraduate College No. 1AbbottabadPakistan
  4. 4.Department of ChemistryCOMSATS University IslamabadIslamabadPakistan
  5. 5.Department of Electrical Engineering, NUST College of Electrical and Mechanical EngineeringNational University of Science and Technology (NUST)IslamabadPakistan

Personalised recommendations