Advertisement

Synthesis and Performance Tuning of Sm0.2Ce0.8O2−δ Electrolyte for Low Temperature Solid Oxide Fuel Cell Application

  • T. L. Gilbile
  • R. S. Pawar
  • V. N. Kapatkar
  • R. C. Kamble
  • S. S. PawarEmail author
Article
  • 5 Downloads

Abstract

The charge transportation in the solid oxide fuel cell electrolyte, Sm0.2Ce0.8O2−δ (SDC); has been elucidated by using DC and AC measurements as a function of grain size at temperature 500°C. Initially, chemically homogeneous pellets of SDC were prepared using its powder synthesized by oxalate co-precipitation method and then mean crystallite-size of the SDC samples was varied by adjusting the sintering temperature. The mean crystallite-size was calculated from x-ray diffraction data by using the Debye–Scherrer equation. Further, the samples were examined for their crystal structure, crystallite-size and chemical homogeneity. Electrochemical impedance spectroscopy was used to understand electrical properties of the samples and its correlation with crystallite-size was revealed. SDC samples having larger crystallites exhibited higher electrical conductivity by providing a number of mobile oxygen ions for conduction. However, a lesser number of oxygen ion vacancies across crystallite-boundaries become a hurdle for oxygen migration through samples having small crystallite-size.

Keywords

SOFC fluorites ionic conductivities co-precipitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    J. Fergus, J. Power Sources 162, 30 (2006).CrossRefGoogle Scholar
  2. 2.
    A. Abdalla, S. Hossain, A. Azad, P. Petra, F. Begum, S. Eriksson, and A. Azad, Renew. Sustain. Energ. Rev. 82, 353 (2018).CrossRefGoogle Scholar
  3. 3.
    Z. Gao, L. Mogni, E. Miller, J. Railsback, and S. Barnett, Energy Environ. Sci. 9, 1602 (2016).CrossRefGoogle Scholar
  4. 4.
    N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, Prog. Mater. Sci. 72, 141 (2015).CrossRefGoogle Scholar
  5. 5.
    J. Kilner and M. Burriel, Annu. Rev. Mater. Res. 44, 365 (2014).CrossRefGoogle Scholar
  6. 6.
    H. Bouhamed, Mater. Sci. Eng. B 225, 182 (2017).CrossRefGoogle Scholar
  7. 7.
    D. Saebea, S. Authayanun, Y. Patcharavorachot, N. Chatrattanawet, and A. Arpornwichanop, Int. J. Hydrog Energy 43, 921 (2017).CrossRefGoogle Scholar
  8. 8.
    A. Solovyev, A. Shipilova, I. Ionov, A. Kovalchuk, S. Rabotkin, and V. Oskirko, J. Electron. Mater. 45, 3921 (2016).CrossRefGoogle Scholar
  9. 9.
    X. Guo, W. Sigle, and J. Maier, J. Am. Ceram. Soc. 86, 77 (2003).CrossRefGoogle Scholar
  10. 10.
    I. Iglesias, G. Baronetti, and F. Mariño, Solid State Ion. 309, 123 (2017).CrossRefGoogle Scholar
  11. 11.
    W. Long, G. Chen-Chen, and W. Chang, J. Electron. Mater. 21, 217 (1992).CrossRefGoogle Scholar
  12. 12.
    J. Koettgen, P. Schmidt, T. Bučko, and M. Martin, Phys. Rev. B 97, 024305 (2018).CrossRefGoogle Scholar
  13. 13.
    T. Santosa, J. Grilo, F. Loureiro, D. Fagg, F. Fonseca, and D. Macedo, Ceram. Int. 44, 2745 (2018).CrossRefGoogle Scholar
  14. 14.
    T. Das, B. Das, K. Parashar, R. Kumar, H. Choudhary, A. Anupama, B. Sahoo, P. Sahoo, and S. Parashar, J. Mater. Sci. Mater. Electron. 28, 13587 (2017).CrossRefGoogle Scholar
  15. 15.
    S. Solomon, A. George, J. Kumpakkattu, and T. John, J. Electron. Mater. 44, 28 (2015).CrossRefGoogle Scholar
  16. 16.
    J. Sheth, D. Chen, H. Tuller, S. Misture, S. Bishop, and B. Sheldon, Phys. Chem. Chem. Phys. 19, 12206 (2017).CrossRefGoogle Scholar
  17. 17.
    D. Sánchez-Rodríguez, S. Yamaguchi, D. Ihara, H. Yamaura, and H. Yahiro, Ceram. Int. 43, 14533 (2017).CrossRefGoogle Scholar
  18. 18.
    Y. Chen, Y. Liu, S. Wang, and R. Devasenathipathy, J. Electron. Mater. 47, 3639 (2018).CrossRefGoogle Scholar
  19. 19.
    R. Jadhav, S. Mathad, and V. Puri, Ceram. Int. 38, 5181 (2012).CrossRefGoogle Scholar
  20. 20.
    A. Jamale, C. Bhosale, and L. Jadhav, J. Electron. Mater. 45, 509 (2016).CrossRefGoogle Scholar
  21. 21.
    S. Pawar, K. Shinde, A. Bhosale, R. Pawar, and S. Pawar, Mater. Chem. Phys. 163, 30 (2015).CrossRefGoogle Scholar
  22. 22.
    G. Arora and D. Aidhy, J. Mater. Chem. A 5, 4026 (2017).CrossRefGoogle Scholar
  23. 23.
    H. Zaki, Phys. B 363, 232 (2005).CrossRefGoogle Scholar
  24. 24.
    E. Iguchi and S. Mochizuki, J. Appl. Phys. 96, 3889 (2004).CrossRefGoogle Scholar
  25. 25.
    A. Khandale and S. Bhoga, J. Alloys Compd. 509, 6955 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSinhgad College of EngineeringPuneIndia
  2. 2.Department of PhysicsSavitribai Phule Pune UniversityPuneIndia
  3. 3.Department of Engineering SciencesSinhgad College of EngineeringPuneIndia

Personalised recommendations