Advertisement

Recent Development of Graphene-Based Ink and Other Conductive Material-Based Inks for Flexible Electronics

  • D. S. Saidina
  • N. Eawwiboonthanakit
  • M. MariattiEmail author
  • S. Fontana
  • C. Hérold
Article
  • 32 Downloads

Abstract

The promising and extraordinary properties of graphene have attracted significant interest, making graphene an alternative to replace many traditional materials for many applications, particularly in conductive ink for the fabrication of flexible electronics. For the past 10 years, numerous studies have been reported on the synthesis of graphene conductive ink for printing on flexible substrates for various electronic applications. The development of graphene-based ink is reviewed, with the main focus on the types of graphene-like materials in conductive inks, and the compositions and important properties of those inks. Another intention behind this review is to compare the pros and cons of graphene-based ink with those using other common conductive materials, such as gold nanoparticles, silver nanoparticles, copper nanoparticles, conductive polymers and carbon nanotubes. Recent works on graphene hybrid-based ink containing other metallic nanoparticles as an alternative way to improve the electrical properties of the conductive inks are also reported. Brief comparisons between inkjet printing and other printing techniques for the fabrication of flexible electronics are discussed.

Keywords

Conductive inks graphene graphene-based ink graphene hybrid-based ink flexible electronics inkjet printing 

Notes

Acknowledgments

The authors acknowledge the financial support from the Ministry of Education Malaysia through the Fundamental Research Grant Scheme (FRGS MRSA; Grant No. 6071385). The authors gratefully acknowledge also the support from Universiti Sains Malaysia, the School of Materials & Mineral Resources Engineering, Université de Lorraine, Campus France and National Centre for Scientific Research (CNRS). We were also grateful to Carbon Materials Group (E205)’s laboratory, Institut Jean Lamour, Université de Lorraine, France for the research attachment of the first author at Université de Lorraine, France.

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).CrossRefGoogle Scholar
  2. 2.
    A. Bianco, H.M. Cheng, T. Enoki, Y. Gogotsi, R.H. Hurt, N. Koratkar, T. Kyotani, M. Monthioux, C.R. Park, J.M.D. Tascon, and J. Zhang, Carbon 65, 1 (2013).CrossRefGoogle Scholar
  3. 3.
    A. Abdelghany, S.A. Elsherif, and H.T. Handal, Surf. Interfaces 9, 93 (2017).CrossRefGoogle Scholar
  4. 4.
    S. Jaworski, E. Sawosz, M. Grodzik, A. Winnicka, M. Prasek, M. Wierzbicki, and A. Chwalibog, Int. J. Nanomedicine 8, 413 (2013).Google Scholar
  5. 5.
    D.A.C. Brownson and C.E. Banks, The Handbook of Graphene Electrochemistry (London: Springer, 2014).CrossRefGoogle Scholar
  6. 6.
    P.R. Wallace, Phys. Rev. 71, 622 (1947).CrossRefGoogle Scholar
  7. 7.
    G. Chen, W. Deng, D. Wu, C. Wu, J. Lu, P. Wang, and X. Chen, Carbon 42, 753 (2004).CrossRefGoogle Scholar
  8. 8.
    M. Choucair, P. Thodarson, and J.A. Stride, Nat. Nanotechnol. 4, 30 (2009).CrossRefGoogle Scholar
  9. 9.
    K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Kim, Nature 490, 192 (2012).CrossRefGoogle Scholar
  10. 10.
    C.T.J. Low, F.C. Walsh, M.H. Chakrabarti, M.A. Hashim, and M.A. Hussain, Carbon 54, 1 (2013).CrossRefGoogle Scholar
  11. 11.
    L. Speyer, S. Fontana, S. Cahen, J. Ghanbaja, G. Medjahdi, and C. Hérold, Solid State Sci. 50, 42 (2015).CrossRefGoogle Scholar
  12. 12.
    W. Cui, W. Lu, Y. Zhang, G. Lin, T. Wei, and L. Jiang, Colloids Surf. A Physicochem. Eng. Asp. 358, 35 (2010).CrossRefGoogle Scholar
  13. 13.
    X. Nie, H. Wang, and J. Zou, Appl. Surf. Sci. 261, 554 (2012).CrossRefGoogle Scholar
  14. 14.
    J. Kastner, T. Faury, H.M. Außerhuber, T. Obermüller, H. Leichtfried, M.J. Haslinger, E. Liftinger, J. Innerlohinger, I. Gnatiuk, D. Holzinger, and T. Lederer, Microelectron. Eng. 176, 84 (2017).CrossRefGoogle Scholar
  15. 15.
    J.S. Kang, H.S. Kim, J. Ryu, H.T. Hahn, S. Jang, and J.W. Joung, J. Mater. Sci. Mater. Electron. 21, 1213 (2010).CrossRefGoogle Scholar
  16. 16.
    N. Perinka, C.H. Kim, M. Kaplanova, and Y. Bonnassieux, Phys. Proc. 44, 120 (2013).CrossRefGoogle Scholar
  17. 17.
    S. Khan, L. Lorenzelli, and R.S. Dahiya, IEEE Sens. J. 15, 3164 (2015).CrossRefGoogle Scholar
  18. 18.
    S.D. Hoath, Fundamentals Of Inkjet Printing (Weinheim: Wiley-VCH, 2016).CrossRefGoogle Scholar
  19. 19.
    W. Yang and C. Wang, J. Mater. Chem. C 4, 7193 (2016).CrossRefGoogle Scholar
  20. 20.
    R. Banfield, Specialist printing worldwide: issue one (2013), https://www.appliedinksolutions.com/pdf/sp11340-43.pdf. Accessed October 2018.
  21. 21.
    D.A. Roberson, R.B. Wicker, L.E. Murr, K. Church, and E. Macdonald, Materials (Basel) 4, 963 (2011).CrossRefGoogle Scholar
  22. 22.
    H.W. Choi, T. Zhou, M. Singh, and G.E. Jabbour, Nanoscale 7, 3338 (2015).CrossRefGoogle Scholar
  23. 23.
    L. Liu, X. Wan, L. Sun, S. Yang, Z. Dai, Q. Tian, M. Lei, X. Xiao, C. Jiang, and W. Wu, RSC Adv. 5, 9783 (2015).CrossRefGoogle Scholar
  24. 24.
    M. Stoppa and A. Chiolerio, Sensors (Basel) 14, 11957 (2014).CrossRefGoogle Scholar
  25. 25.
    H. Zervos, Printed electronics market update—opportunities for the printing industry, http://www.inprintshow.com/usa/conference/pdf/Harry-Zervos.pdf. Accessed September 2018.
  26. 26.
    A. Capasso, A.E. Del Rio Castillo, H. Sun, A. Ansaldo, V. Pellegrini, and F. Bonaccorso, Solid State Commun. 224, 53 (2015).CrossRefGoogle Scholar
  27. 27.
    A. Denneulin, J. Bras, F. Carcone, C. Neuman, and A. Blayo, Carbon 49, 2603 (2011).CrossRefGoogle Scholar
  28. 28.
    A. Kamyshny and S. Magdassi, Small 10, 3515 (2014).CrossRefGoogle Scholar
  29. 29.
    Y. Li, D. Lu, and C.P. Wong, Electrical Conductive Adhesives with Nanotechnologies (New York: Springer, 2010).CrossRefGoogle Scholar
  30. 30.
    K. Arapov, R. Abbel, G. de With, and H. Friedrich, Faraday Discuss. 173, 323 (2014).CrossRefGoogle Scholar
  31. 31.
    L. Huang, Y. Huang, J. Liang, X. Wan, and Y. Chen, Nano Res. 4, 675 (2011).CrossRefGoogle Scholar
  32. 32.
    L. Pei and Y.F. Li, RSC Adv. 7, 51711 (2017).CrossRefGoogle Scholar
  33. 33.
    Y. Gao, W. Shi, W. Wang, Y. Leng, and Y. Zhao, Ind. Eng. Chem. Res. 53, 16777 (2014).CrossRefGoogle Scholar
  34. 34.
    F. Miao, S. Majee, M. Songa, J. Zhao, S.L. Zhang, and Z.B. Zhang, Synth. Met. 220, 318 (2016).CrossRefGoogle Scholar
  35. 35.
    S. Majee, C. Liu, B. Wu, S.L. Zhang, and Z.B. Zhang, Carbon 114, 77 (2017).CrossRefGoogle Scholar
  36. 36.
    P. He and B. Derby, 2D Mater. 4, 021021 (2017).CrossRefGoogle Scholar
  37. 37.
    Y. Su, J. Du, D. Sun, C. Liu, and H. Cheng, Nano Res. 6, 842 (2013).CrossRefGoogle Scholar
  38. 38.
    E.B. Secor, P.L. Prabhumirashi, K. Puntambekar, M.L. Geier, and M.C. Hersam, J. Phys. Chem. Lett. 4, 1347 (2013).CrossRefGoogle Scholar
  39. 39.
    E.B. Secor, B.Y. Ahn, T.Z. Gao, J.A. Lewis, and M.C. Hersam, Adv. Mater. 27, 6683 (2015).CrossRefGoogle Scholar
  40. 40.
    E.B. Secor, T.Z. Gao, A.E. Islam, R. Rao, S.G. Wallace, J. Zhu, K.W. Putz, B. Maruyama, and M.C. Hersam, Chem. Mater. 29, 2332 (2017).CrossRefGoogle Scholar
  41. 41.
    A. Iwakoshi, T. Nanke, and T. Kobayashi, Gold Bull. 38, 107 (2005).CrossRefGoogle Scholar
  42. 42.
    C. Schoner, A. Tuchscherer, T. Blaudeck, S.F. Jahn, R.R. Baumann, and H. Lang, Thin Solid Films 531, 147 (2013).CrossRefGoogle Scholar
  43. 43.
    K. Rajan, I. Roppolo, A. Chiappone, S. Bocchini, D. Perrone, and A. Chiolerio, Nanotechnol. Sci. Appl. 9, 1 (2016).Google Scholar
  44. 44.
    A. Kamyshny, M. Ben-Moshe, S. Aviezer, and S. Magdassi, Macromol. Rapid Commun. 26, 281 (2005).CrossRefGoogle Scholar
  45. 45.
    I. Kim, T.M. Lee, and J. Kim, J. Alloy. Compd. 596, 158 (2014).CrossRefGoogle Scholar
  46. 46.
    X. Zhou, W. Li, M. Wu, S. Tang, and D. Liu, Appl. Surf. Sci. 292, 537 (2014).CrossRefGoogle Scholar
  47. 47.
    Z. Zhang and W. Zhu, J. Alloy. Compd. 649, 687 (2015).CrossRefGoogle Scholar
  48. 48.
    D.G. Lee, D.K. Kim, Y.J. Moon, and S.J. Moon, Thin Solid Films 546, 443 (2013).CrossRefGoogle Scholar
  49. 49.
    S. Vunnam, K. Ankireddy, J. Kellar, and W. Cross, Thin Solid Films 531, 294 (2013).CrossRefGoogle Scholar
  50. 50.
    B.J. de Gans, P.C. Duineveld, and U.S. Schubert, Adv. Mater. 16, 203 (2004).CrossRefGoogle Scholar
  51. 51.
    C.Y. Tsai, W.C. Chang, G.L. Chen, C.H. Chung, J.X. Liang, W.Y. Ma, and T.N. Yang, Nanoscale Res. Lett. 10, 357 (2015).CrossRefGoogle Scholar
  52. 52.
    Y.T. Kwon, Y.I. Lee, S. Kim, K.J. Lee, and Y.H. Choa, Appl. Surf. Sci. 396, 1239 (2017).CrossRefGoogle Scholar
  53. 53.
    W. Xu, X. Dai, T. Zhang, and T. Wang, Chem. Eng. Sci. 190, 40 (2018).CrossRefGoogle Scholar
  54. 54.
    Y. Lee, J.R. Choi, K.J. Lee, N.E. Stott, and D. Kim, Nanotechnology 19, 415604 (2008).CrossRefGoogle Scholar
  55. 55.
    M. Berkei, Conductive coatings using carbon nanotubes: a fascinating material for the coating producer’s toolbox. (CHEManager, Europe, 2011).Google Scholar
  56. 56.
    P. Mukhopadhyay and R.K. Gupta, Graphite, Graphene, and Their Polymer Nanocomposites, 1st ed. (Boca Raton: CRC Press, 2013).Google Scholar
  57. 57.
    K. Kordás, T. Mustonen, G. Tóth, H. Jantunen, M. Lajunen, C. Soldano, S. Talapatra, S. Kar, R. Vajtai, and P.M. Ajayan, Small 2, 1021 (2006).CrossRefGoogle Scholar
  58. 58.
    W. Zhou, A.B. Belay, K. Davis, N.S. Hickman, in 38th IEEE Photovoltaic Specialists Conference, vol. 2324 (2012).Google Scholar
  59. 59.
    Y. Sabba and E.L. Thomas, Macromolecules 37, 4815 (2004).CrossRefGoogle Scholar
  60. 60.
    D.M. Kernan and W.J. Blau, Europhys. Lett. 83, 66009 (2008).CrossRefGoogle Scholar
  61. 61.
    E. Song, R.P. Tortorich, T.H. da Costa, and J.W. Choi, Microelectron. Eng. 145, 143 (2015).CrossRefGoogle Scholar
  62. 62.
    M.V. Kulkarni, S.K. Apte, S.D. Naik, J.D. Ambekar, and B.B. Kale, Sens. Actuators B Chem. 178, 140 (2013).CrossRefGoogle Scholar
  63. 63.
    Z. Stempien, T. Rybicki, E. Rybicki, M. Kozanecki, and M.I. Szynkowska, Synth. Met. 202, 49 (2015).CrossRefGoogle Scholar
  64. 64.
    J.B. Schlenoff and H. Xu, J. Electrochem. Soc. 139, 2397 (1992).CrossRefGoogle Scholar
  65. 65.
    H.S. Abdulla and A.I. Abbo, Int. J. Electrochem. Sci. 7, 10666 (2012).Google Scholar
  66. 66.
    A.A.A. Almario and R.L.T. Caceres, J. Chil. Chem. Soc. 54, 14 (2009).Google Scholar
  67. 67.
    S.A. Popli and U.D. Patel, J. Electrochem. Sci. Eng. 5, 145 (2015).CrossRefGoogle Scholar
  68. 68.
    Y. Hong, J. Kanicki, and I.E.E.E. Trans, Electron. Dev. 51, 1562 (2004).CrossRefGoogle Scholar
  69. 69.
    J. Ha, J. Park, J. Ha, D. Kim, S. Chung, C. Lee, and Y. Hong, Org. Electron. 19, 147 (2015).CrossRefGoogle Scholar
  70. 70.
    M.T. Sharbati, Graphene quantum dot-based organic light emitting diodes, Master’s Thesis, University of Pittsburgh, 2016.Google Scholar
  71. 71.
    L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J.R. Reynolds, Adv. Mater. 12, 481 (2000).CrossRefGoogle Scholar
  72. 72.
    Y.H. Kim, C. Sachse, M.L. Machala, C. May, L. Müller-Meskamp, and K. Leo, Adv. Funct. Mater. 21, 1076 (2011).CrossRefGoogle Scholar
  73. 73.
    H. Abroshan, H. Akbarzadeh, F. Taherkhani, and G. Parsafar, Mol. Phys. 109, 709 (2011).CrossRefGoogle Scholar
  74. 74.
    J. Cho, K.H. Shin, and J. Jang, Thin Solid Films 518, 5066 (2010).CrossRefGoogle Scholar
  75. 75.
    J. Chang, J. He, D. Li, and A.C.S. Appl, Mater. Interfaces 10, 19116 (2018).CrossRefGoogle Scholar
  76. 76.
    Y. Xu, I. Hennig, D. Freyberg, A.J. Strudwick, M.G. Schwab, T. Weitz, and K.C.P. Cha, J. Power Sources 248, 483 (2014).CrossRefGoogle Scholar
  77. 77.
    D. Li, J. Huang, and R.B. Kaner, Acc. Chem. Res. 42, 135 (2009).CrossRefGoogle Scholar
  78. 78.
    W. Yang, C. Wang, V. Arrighi, and F. Vilela, J. Mater. Sci. Mater. Electron. 28, 8218 (2017).CrossRefGoogle Scholar
  79. 79.
    D. Deng, S. Feng, M. Shi, and C. Huang, J. Mater. Sci. Mater. Electron. 28, 15411 (2017).CrossRefGoogle Scholar
  80. 80.
    W. Zhang, E. Bi, M. Li, and L. Gao, Colloids Surf. A Physicochem. Eng. Asp. 490, 232 (2016).CrossRefGoogle Scholar
  81. 81.
    L. Li, M. Gao, Y. Guo, J. Sun, Y. Li, F. Li, Y. Song, and Y. Li, J. Mater. Chem. C 5, 2800 (2017).CrossRefGoogle Scholar
  82. 82.
    A. Ji, Y. Chen, X. Wang, and C. Xu, J. Mater. Sci. Mater. Electron. 29, 13032 (2018).CrossRefGoogle Scholar
  83. 83.
    R. Zhang, B. Peng, and Y. Yuan, Compos. Sci. Technol. 168, 118 (2018).CrossRefGoogle Scholar
  84. 84.
    E. Jewell, S. Hamblyn, T. Claypole, and D. Gethin, Coatings 5, 172 (2015).CrossRefGoogle Scholar
  85. 85.
    T.S. Tran, N.K. Dutta, and N.R. Choudhury, Adv. Colloid Interface Sci. 261, 41 (2018).CrossRefGoogle Scholar
  86. 86.
    W. Shen, X. Zhang, Q. Huang, Q. Xu, and W. Song, Nanoscale 6, 1622 (2014).CrossRefGoogle Scholar
  87. 87.
    W. Zapka, Handbook of Industrial Inkjet Printing: A Full System Approach (Weinheim: Wiley-VCH, 2018).Google Scholar
  88. 88.
    E. Svanholm, Printability and ink-coating interactions in inkjet printing, Dissertation, Karlstad University Studies, 2007.Google Scholar
  89. 89.
    Y.L. Tai and Z.G. Yang, Surf. Interface Anal. 44, 529 (2012).CrossRefGoogle Scholar
  90. 90.
    R. Dang, L. Song, W. Dong, C. Li, X. Zhang, G. Wang, and X. Chen, ACS Appl. Mater. Interfaces 6, 622 (2014).CrossRefGoogle Scholar
  91. 91.
    T. Martin, SGIA J. 3, 5 (2005).Google Scholar
  92. 92.
    A.J. Kell, C. Paquet, O. Mozenson, I. Djavani-Tabrizi, B. Deore, X. Liu, G.P. Lopinski, R. James, K. Hettak, J. Shaker, A. Momciu, J. Ferrigno, O. Ferrand, J.X. Hu, S. Lafreniere, and P.R.L. Malenfant, ACS Appl. Mater. Interfaces 9, 17226 (2017).CrossRefGoogle Scholar
  93. 93.
    Y. Zhang, P. Zhu, G. Li, T. Zhao, X. Fu, R. Sun, F. Zhou, and C.P. Wong, ACS Appl. Mater. Interfaces 6, 560 (2014).CrossRefGoogle Scholar
  94. 94.
    H.J. Hwang, K.H. Oh, and H.S. Kim, Sci. Rep. 6, 19696 (2016).CrossRefGoogle Scholar
  95. 95.
    S. Magdassi, The Chemistry of Inkjet Inks (Singapore: World Scientific Publishing Company, 2010).Google Scholar
  96. 96.
    M.C. Dang, T.M.D. Dang, and E. Fribourg-Blanc, Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 015009 (2013).CrossRefGoogle Scholar
  97. 97.
    A.I. Titkov, O.G. Bukhanets, R.M. Gadirov, Y.M. Yukhin, and N.Z. Lyakhov, Inorg. Mater. Appl. Res. 6, 375 (2015).CrossRefGoogle Scholar
  98. 98.
    M.J. Large, S.P. Ogilvie, M. Meloni, A. Amorim Graf, G. Fratta, J. Salvage, A.A.K. King, and A.B. Dalton, Nanoscale 10, 1582 (2018).CrossRefGoogle Scholar
  99. 99.
    V. Chovancova, A. Pekarovicova, P.D. Fleming, in Proceedings of the Society For Imaging Science And Technology, vol. 143 (2005).Google Scholar
  100. 100.
    D.S. Viswanath, T. Ghosh, D.H.L. Prasad, N.V.K. Dutt, and K.Y. Rani, Visocsity of Liquids (Dordrecht: Springer, 2007).Google Scholar
  101. 101.
    L. Dybowska-Sarapuk, K. Kielbasinski, A. Arazna, K. Futera, A. Skalski, D. Janczak, M. Sloma, and M. Jakubowska, Nanomaterials 8, 602 (2018).CrossRefGoogle Scholar
  102. 102.
    P. Ihalainen, A. Määttänen, and N. Sandler, Int. J. Pharm. 494, 585 (2015).CrossRefGoogle Scholar
  103. 103.
    D.J. Shaw, Introduction to Colloid and Surface Chemistry, 4th ed. (Oxford: Butterworth-Heinemann, 1996).Google Scholar
  104. 104.
    K. Woo, D. Jang, Y. Kim, and J. Moon, Ceram. Int. 39, 7015 (2013).CrossRefGoogle Scholar
  105. 105.
    M. Michel, J.A. Desai, C. Biswas, and A.B. Kaul, Nanotechnology 27, 1 (2016).CrossRefGoogle Scholar
  106. 106.
    G. Cummins and M.P.Y. Desmulliez, Circuit Word 38, 193 (2012).CrossRefGoogle Scholar
  107. 107.
    P. Li, C.A. Tao, B. Wang, J. Huang, T. Li, and J. Wang, J. Nanosci. Nanotechnol. 18, 713 (2018).CrossRefGoogle Scholar
  108. 108.
    J.T. Wu, S.L.C. Hsu, M.H. Tsai, and W.S. Hwang, Thin Solid Films 517, 5913 (2009).CrossRefGoogle Scholar
  109. 109.
    M. Vaseem, K.M. Lee, A.R. Hong, Y.B. Hahn, and A.C.S. Appl, Mater. Interfaces 4, 3300 (2012).CrossRefGoogle Scholar
  110. 110.
    T. Öhlund, J. Örtegren, S. Forsberg, and H.E. Nilsson, Appl. Surf. Sci. 259, 731 (2012).CrossRefGoogle Scholar
  111. 111.
    S. Jeong, H.C. Song, W.W. Lee, S.S. Lee, Y. Choi, W. Son, E.D. Kim, C.H. Paik, S.H. Oh, and B.H. Ryu, Langmuir 27, 3144 (2011).CrossRefGoogle Scholar
  112. 112.
    I.C. Cheng and S. Wagner, Overview of Flexible Electronics Technology (Boston: Springer, 2009).CrossRefGoogle Scholar
  113. 113.
    D.A. Clark, Major trends in gravure printed electronics, BS thesis, California Polytechnic State University, 2010.Google Scholar
  114. 114.
    J. Yang, D. Vak, N. Clark, J. Subbiah, W.W.H. Wong, D.J. Jones, S.E. Watkins, and G. Wilson, Solar Energy Mater. Sol. Cells 109, 47 (2013).CrossRefGoogle Scholar
  115. 115.
    R.R. Søndergaard, M. Hösel, and F.C. Krebs, J. Polym. Sci. Part B Polym. Phys. 51, 16 (2013).CrossRefGoogle Scholar
  116. 116.
    J. Siden, H.E. Nilsson, in International Symposium on Antennas and Propagation Society, vol. 1745 (2007).Google Scholar
  117. 117.
    P.F. Moonen, I. Yakimets, and J. Huskens, Adv. Mater. 24, 5526 (2012).CrossRefGoogle Scholar
  118. 118.
    F.C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T.D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, Solar Energy Mater. Sol. Cells 93, 422 (2009).CrossRefGoogle Scholar
  119. 119.
    A. Mahajan, C.D. Frisbie, L.F. Francis, and A.C.S. Appl, Mater. Interfaces 5, 4856 (2013).CrossRefGoogle Scholar
  120. 120.
    E. Jabari and E. Toyserkani, Carbon 91, 321 (2015).CrossRefGoogle Scholar
  121. 121.
    T. Seifert, E. Sowade, F. Roscher, M. Wiemer, T. Gessner, and R.R. Baumann, Ind. Eng. Chem. Res. 54, 769 (2015).CrossRefGoogle Scholar
  122. 122.
    L. Kubáč and O. Kodym, MATEC Web Conf. 134, 00027 (2017).CrossRefGoogle Scholar
  123. 123.
    Y. Zheng, S. Li, W. Shi, and J. Yu, Nanoscale Res. Lett. 9, 145 (2014).CrossRefGoogle Scholar
  124. 124.
    M. Eslamian, Coatings 4, 60 (2014).CrossRefGoogle Scholar
  125. 125.
    P. Calvert, Chem. Mater. 13, 3299 (2001).CrossRefGoogle Scholar
  126. 126.
    Y. Aleeva and B. Pignataro, J. Mater. Chem. C 2, 6436 (2014).CrossRefGoogle Scholar
  127. 127.
    M. Singh, H.M. Haverinen, P. Dhagat, and G.E. Jabbour, Adv. Mater. 22, 673 (2010).CrossRefGoogle Scholar
  128. 128.
    P. Mariani, L. Vesce, and A. Di Carlo, Semicond. Sci. Technol. 30, 104003 (2015).CrossRefGoogle Scholar
  129. 129.
    H.P. Le, J. Imaging Sci. Technol. 42, 49 (1998).Google Scholar
  130. 130.
    D. Wallace, D. Hayes, T. Chen, V. Shah, D. Radulescu, P. Cooley, K. Wachtler, A. Nallani, in Proceedings of the First International Conference on Integration and Commercialization of Micro and Nanosystems, China, vol. 1161 (2007).Google Scholar
  131. 131.
    G.K. Lau and M. Shrestha, Micromachines 8, 194 (2017).CrossRefGoogle Scholar
  132. 132.
    F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, D. Chu, and A.C. Ferrari, ACS Nano. 6, 2992 (2012).CrossRefGoogle Scholar
  133. 133.
    N. Karim, S. Afroj, A. Malandraki, S. Butterworth, C. Beach, M. Rigout, K.S. Novoselov, A.J. Casson, and S.G. Yeates, J. Mater. Chem. C 5, 11640 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Materials and Mineral Resources Engineering, Engineering CampusUniversiti Sains MalaysiaNibong TebalMalaysia
  2. 2.Institut Jean Lamour, Campus ArtemNancy CedexFrance

Personalised recommendations