Substantial Morphological Changes and Low-Temperature Dielectric Response of α-MoO3 Nanosheets after Thermal Treatment

  • A. M. BadrEmail author
  • H. H. Afify
  • H. A. Elshaikh
  • E. H. El-Anssary


Molybdenum trioxide nanocrystals have been synthesized using a hydrothermal route. The resulting powder samples were postannealed at different temperatures (500°C, 550°C, and 600°C) to provide insight into the effects on their structural and morphological properties. x-Ray diffraction (XRD) analysis revealed that all the powders crystallized as pure single-phase α-MoO3 nanocrystals. The intensity of the characteristic peaks increased slightly with increase of the postannealing temperature from 500°C to 600°C, indicating improved crystallinity of the α-MoO3. Scanning electron microscopy (SEM) analysis of the powder samples revealed substantial morphological changes when changing the postannealing temperature from 500°C to 600°C, with high-quality α-MoO3 nanosheets being obtained after postannealing at 600°C. This high-crystallinity powder was pelletized into a disk-shaped sample (CPS600) to explore the mechanisms of electrical conduction in an alternating-current (AC) electric field. The effects of both the working temperature and frequency of the AC field on the dielectric response of the CPS600 disk samples were elucidated and analyzed, then their AC electrical conductivity was investigated in the same regions of working temperature and applied frequency.


Hydrothermal synthesis thermodynamically stable α-MoO3 phase microstructural properties morphological features electrical conduction mechanisms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    X.W. Lou and H.C. Zeng, Chem. Mater. 14, 4781 (2002).Google Scholar
  2. 2.
    P. Badica, Cryst. Growth Des. 7, 794 (2007).Google Scholar
  3. 3.
    N.A. Chernova, M. Roppolo, A.C. Dillon, and M.S. Whittingham, J. Mater. Chem. 19, 2526 (2009).Google Scholar
  4. 4.
    R. Naouel, H. Dhaouadi, F. Touati, and N. Gharbi, Nano-Micro Lett. 3, 242 (2011).Google Scholar
  5. 5.
    A.K. Prasad, P.I. Gouma, D.J. Kubinski, J.H. Visser, R.E. Soltis, and P.J. Schmitz, Thin Solid Films 436, 46 (2003).Google Scholar
  6. 6.
    E. Heracleous, A.F. Lee, I.A. Vasalos, and A.A. Lemonidou, Catal. Lett. 88, 47 (2003).Google Scholar
  7. 7.
    T. Brezesinski, J. Wang, S.H. Tolbert, and B. Dunn, Nat. Mater. 9, 146 (2010).Google Scholar
  8. 8.
    L.A. Riley, S.H. Lee, L. Gedvilias, and A.C. Dillon, J. Power Sources 195, 588 (2010).Google Scholar
  9. 9.
    P. Simon and Y. Gogotsi, Nat. Mater. 7, 845 (2008).Google Scholar
  10. 10.
    D.P. Dubal, O. Ayyad, V. Ruiz, and P. Gómez-Romero, Chem. Soc. Rev. 44, 1777 (2015).Google Scholar
  11. 11.
    N. Devillers, S. Jemei, M.C. Péra, D. Bienaimé, and F. Gustin, J. Power Sources 246, 596 (2014).Google Scholar
  12. 12.
    Y.X. Xu, S.S. Zheng, H.F. Tang, X.T. Guo, H.G. Xue, and H. Pang, Energy Storage Mater. 9, 11 (2017).Google Scholar
  13. 13.
    B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (New York: Kluwer Academic, 1999).Google Scholar
  14. 14.
    S. Trasatti and G. Buzzanca, J. Electroanal. Chem. Interfacial Electrochem. 29, 1 (1971).Google Scholar
  15. 15.
    F. Qu, J. Liu, Y. Wang, S. Wen, Y. Chen, X. Li, and S. Ruana, Sens. Actuators B Chem. 199, 346 (2014).Google Scholar
  16. 16.
    Q.D. Yang, H.T. Xue, X. Yang, Z. Guan, Y. Cheng, S.-W. Tsang, and C.-S. Lee, Electrochim. Acta 185, 83 (2015).Google Scholar
  17. 17.
    Y. Liu, B. Zhang, Y. Yang, Z. Chang, Z. Wen, and Y. Wu, J. Mater. Chem. A 1, 13582 (2013).Google Scholar
  18. 18.
    Y. Wen, T. Qin, Z. Wang, X. Jiang, S. Peng, J. Zhang, J. Hou, F. Huang, D. He, and G. Cao, J. Alloys Compd. 699, 126 (2017).Google Scholar
  19. 19.
    A. González, E. Goikolea, J.A. Barrena, and R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189 (2016).Google Scholar
  20. 20.
    W. Zhang and K.J. Huang, Inorg. Chem. Front. 4, 1602 (2017).Google Scholar
  21. 21.
    Y. Wang, K.J. Huang, and X. Wu, Biosens. Bioelectron. 97, 305 (2017).Google Scholar
  22. 22.
    Q.P. Ding, H.B. Huang, J.H. Duan, J.F. Gong, S.G. Yang, X.N. Zhao, and Y.W. Du, J. Cryst. Growth 294, 304 (2006).Google Scholar
  23. 23.
    L. Kihlborg, Ark. Kemi 21, 357 (1963).Google Scholar
  24. 24.
    J. Chang, M. Jin, F. Yao, T.H. Kim, V.T. Le, H. Yue, F. Gunes, B. Li, A. Ghosh, S. Xie, and Y.H. Lee, Adv. Funct. Mater. 23, 5074 (2013).Google Scholar
  25. 25.
    Q. Mahmood, H.J. Yun, W.S. Kim, and H.S. Park, J. Power Sources 235, 187 (2013).Google Scholar
  26. 26.
    L.Q. Mai, B. Hu, W. Chen, Y.Y. Qi, C.S. Lao, R.S. Yang, Y. Dai, and Z.L. Wang, Adv. Mater. 19, 3712 (2007).Google Scholar
  27. 27.
    S. Wang, K. Dou, Y. Dong, Y. Zou, and H. Zeng, Int. J. Nanomanuf. 12, 404 (2016).Google Scholar
  28. 28.
    A.M. Badr, H.A. Elshaikh, and I.M. Ashraf, J. Mod. Phys. 2, 12 (2011).Google Scholar
  29. 29.
    S.N. Mustafaeva, M.M. Asadov, and K.S. Qahramanov, Semicond. Phys. Quantum Electron. Optoelectron. 10, 58 (2007).Google Scholar
  30. 30.
    B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction, 3rd ed. (Englewood Cliffs: Prentice-Hall, 2001), pp. 167–171.ISBN 0-201-61091-4.Google Scholar
  31. 31.
    R. Jenkins and R.L. Snyder, Introduction to X-Ray Powder Diffractometry (New York: Wiley, 1996), pp. 89–91.ISBN 0-471-51339-3.Google Scholar
  32. 32.
    H.L. Yu, L. Li, X.M. Gaoa, Y. Zhanga, and F. Meng, Sens. Actuators B Chem. 171, 679 (2012).Google Scholar
  33. 33.
    S.B. Umbarkar, A.V. Biradar, S.M. Mathew, S.B. Shelke, K.M. Malshe, P.T. Patil, S.P. Dagde, S.P. Niphadkar, and M.K. Dongare, Green Chem. 8, 488 (2006).Google Scholar
  34. 34.
    N.S. Subramanian, E. Savarimuthu, C. Sanjeeviraja, and S. Ramamurthy, Trans. SAEST 40, 62 (2005).Google Scholar
  35. 35.
    M.A. Camacho-Lopez, H. Haro-Poniatowski, L. Lartundo-Rojas, J. Livage, and C.M. Julien, Mater. Sci. Eng. B 135, 88 (2006).Google Scholar
  36. 36.
    E. Comini, G. Faglia, G. Sberveglieri, C. Cantalini, M. Passacantando, S. Santucci, Y. Li, W. Wlodarski, and W. Qu, Sens. Actuators B 68, 168 (2000).Google Scholar
  37. 37.
    C. Julien, A. Khelfa, O.M. Hussain, and G.A. Nazri, J. Cryst. Growth 156, 235 (1995).Google Scholar
  38. 38.
    P. Jittiarporn, L. Sikong, K. Kooptarnond, and W. Taweepreda, Dig. J. Nanomater. Biostruct. 10, 1237 (2015).Google Scholar
  39. 39.
    W.Q. Yang, Z.R. Wei, X.H. Zhu, and D.Y. Yang, Phys. Lett. A 373, 3965 (2009).Google Scholar
  40. 40.
    R. Sivakumar, R. Gopalakrishnan, M. Jayachandran, and C. Sanjeeviraja, Curr. Appl. Phys. 7, 51 (2007).Google Scholar
  41. 41.
    D. Xiang, C. Han, J. Zhang, and W. Chen, Sci. Rep. 4, 4891 (2014).Google Scholar
  42. 42.
    T. Björkman, A. Gulans, A.V. Krasheninnikov, and R.M. Nieminen, Phys. Rev. Lett. 108, 235502 (2012).Google Scholar
  43. 43.
    K. Berland, V.R. Cooper, K. Lee, E. Schröder, T. Thonhauser, P. Hyldgaard, and B.I. Lundqvist, Rep. Prog. Phys. 78, 66501 (2015).Google Scholar
  44. 44.
    S. Balendhran, J. Deng, J.Z. Ou, S. Walia, J. Scott, J. Tang, K.L. Wang, M.R. Field, S. Russo, S. Zhuiykov, M.S. Strano, N. Medhekar, S. Sriram, M. Bhaskaran, and K. Kalantar-zadeh, Adv. Mater. 25, 109 (2013).Google Scholar
  45. 45.
    D. Hanlon, C. Backes, T.M. Higgins, M. Hughes, A. O’Neill, P. King, N. McEvoy, G.S. Duesberg, B. Mendoza Sanchez, H. Pettersson, V. Nicolosi, and J.N. Coleman, Chem. Mater. 26, 1751 (2014).Google Scholar
  46. 46.
    M.M. Alsaif, M.R. Field, B.J. Murdoch, T. Daeneke, K. Latham, A.F. Chrimes, A.S. Zoolfakar, S.P. Russo, J.Z. Ou, and K. Kalantar-Zadeh, Nanoscale 6, 12780 (2014).Google Scholar
  47. 47.
    M. Barsoum, Fundamentals of Ceramics (New York: McGraw-Hill, 1997).Google Scholar
  48. 48.
    H.E. Atyia, Vacuum 81, 590 (2007).Google Scholar
  49. 49.
    L.L. Hench and J.K. West, Principles of Electronic Ceramics (New York: Wiley, 1990).Google Scholar
  50. 50.
    K.A. Narula, R. Singh, and S. Chandra, Bull. Mater. Sci. 23, 227 (2000).Google Scholar
  51. 51.
    A. Kumar, B.P. Singh, R.N.P. Choudhary, and A.K. Thakur, Mater. Chem. Phys. 99, 150 (2006).Google Scholar
  52. 52.
    K.W. Wagner, Ann. Phys. 40, 817 (1913).Google Scholar
  53. 53.
    L. Sirdeshmukh, K. Krishna Kumar, S.B. Laxaman, A.R. Krishna, and G. Sathaiah, Bull. Mater. Sci. 21, 219 (1998).Google Scholar
  54. 54.
    G.C. Jain, B.K. Das, and N.C. Goel, J. Am. Ceram. Soc. 62, 79 (1979).Google Scholar
  55. 55.
    Y. Matsuo, K. Ono, M. Ishikura, and I. Sasaki, IEEE Trans. Magn. 33, 3751 (1997).Google Scholar
  56. 56.
    J.C. Maxwell, Electricity and Magnetism (Oxford: Oxford University Press, 1973), p. 828.Google Scholar
  57. 57.
    P. Suryanarayana, H.N. Acharya, and K. Rao, J. Mater. Sci. Lett. 3, 21 (1984).Google Scholar
  58. 58.
    P. Smyth, Dielectric Behaviour and Structure (New York: McGraw-Hill, 1965).Google Scholar
  59. 59.
    A.J. Moulson and J.M. Herbert, Electroceramics: Materials Properties Applications (New York: Chapman & Hall, 1990).Google Scholar
  60. 60.
    K. Amarendra Singh, T.C. Goel, and R.G. Mendiratta, J. Appl. Phys. 91, 6626 (2002).Google Scholar
  61. 61.
    S.N. Mustafaeva, M.M. Asadov, and K.S. Qahramanov, Semicond. Phys. Quantum Electron. Optoelectron. 10, 58 (2007).Google Scholar
  62. 62.
    A.K. Jonscher, Nature 267, 673 (1977).Google Scholar
  63. 63.
    R.H. Chen, R.J. Wang, T.M. Chen, and C.S. Shern, J. Phys. Chem. Solids 61, 519 (2000).Google Scholar
  64. 64.
    K. Jonscher, J. Mater. Sci. 13, 553 (1978).Google Scholar
  65. 65.
    M.D. Ingram, Phys. Chem. Glasses 28, 215 (1987).Google Scholar
  66. 66.
    A. Angell, Chem. Rev. 90, 523 (1990).Google Scholar
  67. 67.
    A.R. Long, Adv. Phys. 31, 553 (1982).Google Scholar
  68. 68.
    S.R. Elliott, Adv. Phys. 36, 135 (1987).Google Scholar
  69. 69.
    M. Pollak and T.H. Geballe, Phys. Rev. 122, 1742 (1961).Google Scholar
  70. 70.
    P.G. Bruce, R.A. West, and D.P. Almond, Solid State Ion. 7, 57 (1982).Google Scholar
  71. 71.
    W.K. Lee, J.F. Liu, and A.S. Nowick, Phys. Rev. Lett. 67, 1559 (1991).Google Scholar
  72. 72.
    L. Murowski and R.J. Barczynski, J. Non-Cryst. Solids 185, 84 (1995).Google Scholar
  73. 73.
    R.M. Hill and A.K. Jonscher, J. Non-Cryst. Solids 32, 53 (1979).Google Scholar
  74. 74.
    N.F. Mott and E.A. Davis, Electronic Processes in Non-Crystalline Materials (Oxford: Clarendon, 1979).Google Scholar
  75. 75.
    R.H. Chen, R.Y. Chang, and S.C. Shern, J. Phys. Chem. Solids 63, 2069 (2002).Google Scholar
  76. 76.
    N. Chand and D. Jain, Bull. Mater. Sci. 27, 227 (2004).Google Scholar
  77. 77.
    V. Gupta, K.K. Bamzai, P.N. Kotru, and B.M. Wanklyn, Mater. Sci. Eng. B 130, 163 (2006).Google Scholar
  78. 78.
    E.J.W. Verwey and E.L. Heilman. J. Chem. Phys. 15, 174 (1947).Google Scholar
  79. 79.
    C.A. Angell, Annu. Rev. Phys. Chem. 43, 693 (1992).Google Scholar
  80. 80.
    A. Ma, E.A.E. Wahhab, A.E. Bekheet, and H.E. Atyia, Acta Phys. Pol. A 28, 403 (2000).Google Scholar
  81. 81.
    S.S. Fouad, A.E. Bekheet, and A.M. Farid, Physica B 163, 3229 (2002).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceAswan UniversityAswânEgypt
  2. 2.Department of Solid State PhysicsNational Research CenterCairoEgypt
  3. 3.Research Center for NanoMaterial Studies and Their Promising TechnologiesAswânEgypt

Personalised recommendations