Structural, Optical, and Magnetic Properties of Co-Doped SnO2 Nanoparticles

  • M. YehiaEmail author
  • Sh. Labib
  • S. M. Ismail


Cobalt-doped SnO2 nanoparticles with different cobalt concentrations have been prepared using a polyol method, and x-ray diffraction (XRD) analysis and Fourier-transform infrared spectroscopy applied to investigate their structure. The XRD patterns of all the prepared nanoparticles revealed single-phase tetragonal structure. The morphology of the nanoparticles was studied using scanning electron microscopy. Ultraviolet–visible absorbance spectroscopy measurements were utilized to understand the optical properties, revealing the dependence of the bandgap on the cobalt doping concentration. Magnetic measurements revealed that the samples exhibited room-temperature ferromagnetism, which should be an intrinsic characteristic. The origin of the room-temperature ferromagnetism was investigated using vibrating-sample magnetometry and electron spin resonance spectroscopy.


Diluted magnetic semiconductors SnO2 optical properties bound magnetic polaron electron spin resonance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    S. Das and V. Jayaraman, Prog. Mater. Sci. 66, 112 (2014). Scholar
  2. 2.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).CrossRefGoogle Scholar
  3. 3.
    A. Punnoose, K. Dodge, J.J. Beltrán, K.M. Reddy, N. Franco, J. Chess, J. Eixenberger, and C.A. Barrero, J. Appl. Phys. 115, 17B534 (2014).CrossRefGoogle Scholar
  4. 4.
    S. Ferrari, L.G. Pampillo, and F.D. Saccone, Mater. Chem. Phys. 177, 206 (2016).CrossRefGoogle Scholar
  5. 5.
    R.K. Zulfiqar, Y. Yuan, Z. Iqbal, J. Yang, W. Wang, Z. Ye, and J. Lu, J. Mater. Sci. Mater. Electron. 28, 4625 (2017).CrossRefGoogle Scholar
  6. 6.
    Y. Li, W. Yin, R. Deng, R. Chen, J. Chen, Q. Yan, B. Yao, H. Sun, S.H. Wei, and T. Wu, NPG Asia Mater. 4, 1 (2012).CrossRefGoogle Scholar
  7. 7.
    R. Pushpa, P. Kumar, B. Ramanujam, and A. Punnoose, J. Magn. Magn. Mater. 407, 46 (2016).CrossRefGoogle Scholar
  8. 8.
    R. Adhikari, A.K. Das, D. Karmakar, T.V. Chandrasekhar Rao, and J. Ghatak, Phys. Rev. B 78, 024404 (2008).CrossRefGoogle Scholar
  9. 9.
    M. Ghalkhani, B. Hosseininia, J. Beheshtian, and A.A. Firooz, J. Mater. Sci. Mater. Electron. 28, 7568 (2017). Scholar
  10. 10.
    M.S. Pereira, T.S. Ribeiro, F.A.S. Lima, L.P.M. Santos, C.B. Silva, P.T.C. Freire, and I.F. Vasconcelos, J. Nanopart. Res. 20, 212 (2018).CrossRefGoogle Scholar
  11. 11.
    C. Zhang and J. Lin, Chem. Soc. Rev. 41, 7938 (2012).CrossRefGoogle Scholar
  12. 12.
    L.M. Fang, X.T. Zu, Z.J. Li, S. Zhu, C.M. Liu, L.M. Wang, and F. Gao, J. Mater. Sci. Mater. Electron. 19, 868 (2008).CrossRefGoogle Scholar
  13. 13.
    M.P. Rajeeva, C.S. Naveen, A.R. Lamani, and H.S. Jayanna, J. Mater. Sci. Mater. Electron. 28, 16348 (2017). Scholar
  14. 14.
    A.S. Ahmed, S.M. Muhamed, M.L. Singla, S. Tabassum, A.H. Naqvi, and A. Azam, J. Lumin. 131, 1 (2011). Scholar
  15. 15.
    M. Garcia-Tecedor, D. Maestre, A. Cremades, and J. Piqueras, J. Phys. Chem. C 120, 22028 (2016).CrossRefGoogle Scholar
  16. 16.
    B. Cojocaru, D. Avram, V. Kessler, V. Parvulescu, G. Seisenbaeva, and C. Tiseanu, Sci. Rep. 7, 9598 (2017).CrossRefGoogle Scholar
  17. 17.
    M. Yehia, Sh. Labib, and S.M. Ismail, Phys. B Condens. Matter 446, 49 (2014).CrossRefGoogle Scholar
  18. 18.
    M. Bortolotti, L. Lutterotti, and I. Lonardelli, J. Appl. Cryst. 42, 538 (2009).CrossRefGoogle Scholar
  19. 19.
    J. Gajendiran and V. Rajendran, Optoelectron. Adv. Mater. 5, 44 (2011).Google Scholar
  20. 20.
    R. Yogamalar, V. Mahendran, R. Srinivasan, A. Beitollahi, R.P. Kumar, A. Chandra Bose, and A. Vinutures, Chem. Asian J. 5, 2379 (2010).CrossRefGoogle Scholar
  21. 21.
    R. Hu, Y. Ouyang, T. Liang, H. Wang, J. Liu, J. Chen, C. Yang, L. Yang, and M. Zhu, Adv. Mater. 29, 1605006 (2017).CrossRefGoogle Scholar
  22. 22.
    M. Faisal, A.A. Ibrahim, F.A. Harraz, H. Bouzid, M.S. Al-Assiri, and A.A. Ismail, J. Mol. Catal. A Chem. 397, 19 (2015).CrossRefGoogle Scholar
  23. 23.
    A.M. Ungureanu, O. Oprea, B.S. Vasile, C. Andronescu, G. Voicu, I. Jitaru, and T. Cent, Eur. J. Chem. 12, 909 (2014). Scholar
  24. 24.
    S.A. Saleh, A.A. Ibrahim, and S.H. Mohamed, Acta Phys. Pol. A 129, 1220 (2016).CrossRefGoogle Scholar
  25. 25.
    Sh. Labib, J. Saudi Chem. Soc. 21, 664 (2017).CrossRefGoogle Scholar
  26. 26.
    J. Jiang, Y. Lu, B.K. Meyer, D.M. Hofmann, and M. Eickhoff, J. Appl. Phys. 119, 245703 (2016).CrossRefGoogle Scholar
  27. 27.
    M. Weidner, Fermi Level Determination in Tin Oxide by Photoelectron Spectroscopy: Relation to Optoelectronic Properties; Band Bending at Surfaces and Interfaces; Modulation Doping, Ph.D. Thesis to TU Darmstadt (2015).Google Scholar
  28. 28.
    A. Abdelkrim, S. Rahmane, O. Abdelouahab, N. Abdelmalek, and G. Brahim, Optik 127, 2653 (2016).CrossRefGoogle Scholar
  29. 29.
    A.M. Ganose and D.O. Scanlon, J. Mater. Chem. C 4, 1467 (2016).CrossRefGoogle Scholar
  30. 30.
    X. Yu-Jing, G. Zi-Sheng, and H. Tao, Chin. Phys. B 23, 087701 (2014).CrossRefGoogle Scholar
  31. 31.
    T.B. Ivetić, M.R. Dimitrievska, N.L. Finčur, Lj.R. Dačanin, I.O. Gśth, B.F. Abramović, and S.R. Lukić-Petrović, Ceram. Int. 40, 1545 (2014).CrossRefGoogle Scholar
  32. 32.
    H. Wafula, A. Juma, T. Sakwa, R. Musembi, and J. Simiyu, Coatings 6, 30 (2016).CrossRefGoogle Scholar
  33. 33.
    S.S. Kim, H.G. Na, H.W. Kim, V. Kulishand, and P. Wu, Sci. Rep. 5, 10723 (2015).CrossRefGoogle Scholar
  34. 34.
    X. Li, R. Deng, Y. Li, B. Yao, Z. Ding, J. Qin, and Q. Liang, Ceram. Int. 42, 5299 (2016).CrossRefGoogle Scholar
  35. 35.
    A. Janotti, J.B. Varley, J.L. Lyons, and C.G. Van de Walle, Controlling the Conductivity in Oxide Semiconductors, ed. J. Wu, J. Cao, W.-Q. Han, A. Janotti, and H.C. Kim (Berlin: Springer, 2012), p. 23.Google Scholar
  36. 36.
    A.K. Singh, A. Janotti, M. Scheffler, and C.G. Van de Walle, Phys. Rev. Lett. 101, 055502 (2008).CrossRefGoogle Scholar
  37. 37.
    V.B. Kamble and A.M. Umarji, AIP Adv. 3, 082120 (2013).CrossRefGoogle Scholar
  38. 38.
    D.B. Granato, J.A. Caraveo-Frescas, H.N. Alshareef, and U. Schwingenschl Ögl, Appl. Phys. Lett. 102, 212105 (2013).CrossRefGoogle Scholar
  39. 39.
    R. Singh, M. Kumar, S. Shankar, R. Singh, A.K. Ghosh, O.P. Thakur, and B. Das, Mater. Sci. Semicond. Process. 31, 310 (2015).CrossRefGoogle Scholar
  40. 40.
    E. Mokaripoor and M.-M. Bagheri-Mohagheghi, Mater. Sci. Semicond. Process. 30, 400 (2015).CrossRefGoogle Scholar
  41. 41.
    J.J.J. Carey, M. Legesse, and M. Nolan, J. Phys. Chem. C 120, 19160 (2016).CrossRefGoogle Scholar
  42. 42.
    B. Pal and P.K. Giri, J. Nanosci. Nanotechnol. 11, 9167 (2011).CrossRefGoogle Scholar
  43. 43.
    E. Swatsitang, S. Phokha, S. Hunpratub, and S. Maensiri, Phys. B Condens. Matter 485, 14 (2016).CrossRefGoogle Scholar
  44. 44.
    T. Debnath, S. Das, D. Das, and S. Sutradhar, J. Alloys Compd. 696, 670 (2017).CrossRefGoogle Scholar
  45. 45.
    A. Bandyopadhyay, S. Sutradhar, B.J. Sarkar, A.K. Deb, and P.K. Chakrabarti, Appl. Phys. Lett. 100, 252411 (2012). Scholar
  46. 46.
    S. Shi, D. Gao, X. Qiang, Z. Yang, and D. Xue, RSC Adv. 4, 45467 (2014).CrossRefGoogle Scholar
  47. 47.
    K.G. Godinho, A. Walsh, and G.W. Watson, J. Phys. Chem. C 113, 439 (2009). Scholar
  48. 48.
    A. Möller, T. Taetz, N. Hollmann, J.A. Mydosh, V. Kataev, M. Yehia, E. Vavilova, and B. Büchner, Phys. Rev. B 76, 134411 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Reactor Physics Department, Nuclear Researches CenterAtomic Energy AuthorityCairoEgypt
  2. 2.Nuclear Chemistry Department, Hot Laboratories CenterAtomic Energy AuthorityCairoEgypt

Personalised recommendations