An Electron Paramagnetic Resonance and Photoluminescence Investigation of UVB Radiation Emitting Gadolinium-Activated CaY2Al4SiO12 Garnet Compound

  • Vijay SinghEmail author
  • Sumandeep Kaur
  • A. S. Rao
  • N. Singh
  • M. S. Pathak
  • J. L. Rao


Trivalent gadolinium (Gd3+) activated CaY2Al4SiO12 garnet compounds with a variable concentration of Gd3+ ions were synthesized by a sol–gel method. The synthesized garnet compounds were characterized for their structural, morphological, luminescent, and magnetic properties. The x-ray diffraction data of Gd3+ activated CaY2Al4SiO12 garnet compound reveal the cubic structure with Ia3d space group. The scanning electron microscope images represent the morphology of the particles. The photoluminescence properties were analyzed from the excitation and emission spectra. The emission spectra of the CaY2Al4SiO12:Gd3+ garnet compound under 273 nm excitation exhibit two emission peaks at (308 nm and 314 nm) nm and are attributed to 6P5/2 → 8S7/2 and 6P7/2 → 8S7/2 transitions, respectively. The emission peak observed at 314 nm is more intense than the peak observed at 308 nm. The high-intensity peak at 314 nm is used to cure various skin disorders, and hence is beneficial in phototherapy. The intensity of the emission peaks increases up to 0.09 mol of Gd3+ ion concentration in the CaY2Al4SiO12 garnet compound, and beyond, then decreases, showing concentration quenching. The electron paramagnetic resonance of Gd3+ ions in the prepared garnet compound exhibits resonance signals with effective g values at g ≈ 6.5, 5.0, 2.6, 2.2, 2.0, and 1.6 of the U-spectrum, due to cubic, octahedral, or tetrahedral distorted sites.


Sol–gel EPR Gd3+ CaY2Al4SiO12 garnet luminescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIT) (2018M2B2A9 065656).


  1. 1.
    Z. Jiang, J. Gou, Y. Min, C. Huang, W. Lv, X. Yu, X. Su, and L. Duan, J. Alloys Compd. 727, 63 (2017).CrossRefGoogle Scholar
  2. 2.
    P. Haritha, C.S. Dwaraka Viswanath, K. Linganna, P. Babu, C.K. Jayashankar, V. Lavin, and V. Venkatramu, J. Lumin. 179, 533 (2016).CrossRefGoogle Scholar
  3. 3.
    A.A. Trofimov, C. Li, K.S. Brinkman, and L.G. Jacobsohn, Opt. Mater. 68, 7 (2017).CrossRefGoogle Scholar
  4. 4.
    B. Malysa, A. Meijerink, and T. Jüstel, J. Lumin. 202, 523 (2018).CrossRefGoogle Scholar
  5. 5.
    J. Wang, F. Xu, R.J. Wheatley, N. Neate, and X. Hou, Ceram. Int. 42, 14228 (2016).CrossRefGoogle Scholar
  6. 6.
    S. Ramakumar, C. Deviannapoorani, L. Dhivya, L.S. Shankar, and R. Murugan, Prog. Mater Sci. 88, 325 (2017).CrossRefGoogle Scholar
  7. 7.
    K. Hofstetter, A. Junio Samson, S. Narayanan, and V. Thangadurai, J. Power Sources 390, 297 (2018).CrossRefGoogle Scholar
  8. 8.
    P. Loiko, N. Khaidukov, A. Volokitina, I. Zhidkova, E. Vilejshikova, A. Novichkov, V. Aseev, J.M. Serres, X. Mateos, and K. Yumashev, Dyes Pigments 150, 158 (2018).CrossRefGoogle Scholar
  9. 9.
    K. Asami, J. Ueda, M. Kitaura, and S. Tanabe, J. Lumin. 198, 418 (2018).CrossRefGoogle Scholar
  10. 10.
    M.S. Bhagat, K.N. Shinde, N. Singh, M.S. Pathak, P.K. Singh, S.U. Pawar, and V. Singh, Optik 161, 111 (2018).CrossRefGoogle Scholar
  11. 11.
    K. Sawada, T. Nakamura, and S. Adachi, Ceram. Int. 43, 14225 (2017).CrossRefGoogle Scholar
  12. 12.
    S. Zhang, P. Zhang, X. Liu, Z. Yang, Y. Huang, and H.J. Seo, J. Lumin. 203, 152 (2018).CrossRefGoogle Scholar
  13. 13.
    Z. Pan, W. Li, Y. Xu, Q. Hu, and Y. Zheng, RSC Adv. 6, 20458 (2016).CrossRefGoogle Scholar
  14. 14.
    A. Katelnikovas, S. Sakirzanovas, D. Dutczak, J. Plewa, D. Enseling, H. Winkler, A. Kareiva, and T. Jüstel, J. Lumin. 136, 17 (2013).CrossRefGoogle Scholar
  15. 15.
    H. Ji, L. Wang, Y. Cho, N. Hirosaki, M.S. Molokeev, Z. Xia, Z. Huang, and R.-J. Xie, J. Mater. Chem. C 4, 9872 (2016).CrossRefGoogle Scholar
  16. 16.
    Z. Pan, J. Chen, H. Wu, and W. Li, Opt. Mater. 72, 257 (2017).CrossRefGoogle Scholar
  17. 17.
    R. Singh and H.S. Nalwa, J. Biomed. Nanotechnol. 7, 489 (2011).CrossRefGoogle Scholar
  18. 18.
    B.L. Diffey and J. Robson, J. Soc. Cosmet. Chem. 40, 127 (1989).Google Scholar
  19. 19.
    C. Stevens, V.A. Khan, J.Y. Lu, C.L. Wilson, P.L. Pusey, M.K. Kabwe, E.C.K. Lgwegbe, E. Chalutz, and S. Droby, Crop Prot. 17, 75 (1998).CrossRefGoogle Scholar
  20. 20.
    J.G. Goodberlet, Appl. Phys. Lett. 76, 667 (2000).CrossRefGoogle Scholar
  21. 21.
    D. Costa, A.M. Galvão, R.E. Di Paolo, A.A. Freitas, J.C. Lima, F.H. Quina, and A.L. Maçanita, Tetrahedron 71, 3157 (2015).CrossRefGoogle Scholar
  22. 22.
    A.R. Young, J. Claveau, and A.B. Rossi, J. Am. Acad. Dermatol. 76, S100 (2017).CrossRefGoogle Scholar
  23. 23.
    S. Tamboli and S.J. Dhoble, Spectrochim. Acta A Mol. Biomol. Spectrosc. 184, 119 (2017).CrossRefGoogle Scholar
  24. 24.
    W. Zeng, S. Wu, J. Wen, and Z. Chen, Constr. Build. Mater. 93, 1125 (2015).CrossRefGoogle Scholar
  25. 25.
    M.F. Holick, Anticancer Res. 36, 1345 (2016).Google Scholar
  26. 26.
    M.Yu. Glyavin, S.V. Golubev, I.V. Izotov, A.G. Litvak, A.G. Luchinin, S.V. Razin, A.V. Sidorov, V.A. Skalyga, and A.V. Vodopyanov, Appl. Phys. Lett. 10, 174101 (2014).CrossRefGoogle Scholar
  27. 27.
    B.R. Halls, P.S. Hsu, N. Jiang, E.S. Legge, J.J. Felver, M.N. Slipchenko, S. Roy, T.R. Meyer, and J.R. Gord, Optica 4, 897 (2017).CrossRefGoogle Scholar
  28. 28.
    S. Dogra and A.J. Kanwar, Indian J. Dermatol. Venereol. Leprol. 70, 205 (2004).Google Scholar
  29. 29.
    A.B. Gawande, R.P. Sonekar, and S.K. Omanwar, Optik 127, 3925 (2016).CrossRefGoogle Scholar
  30. 30.
    D.S. Thakare, S.K. Omanwar, P.L. Muthal, S.M. Dhopte, V.K. Kondawar, and S.V. Moharil, Phys. Stat. Sol. A 201, 574 (2004).CrossRefGoogle Scholar
  31. 31.
    M. Runowski and S. Lis, J. Alloys Compd. 661, 182 (2016).CrossRefGoogle Scholar
  32. 32.
    B. Fan, S. Qi, W. Zhao, S. Li, and S. An, J. Lumin. 196, 520 (2018).CrossRefGoogle Scholar
  33. 33.
    S.K. Omanwar, S.R. Jaiswal, N.S. Sawala, K.A. Koparkar, and V.B. Bhatkar, Mater. Discov. 7, 15 (2017).CrossRefGoogle Scholar
  34. 34.
    T. Jiang, Y. Liu, S. Liu, N. Liu, and W. Qin, J. Colloid Interface Sci. 377, 81 (2012).CrossRefGoogle Scholar
  35. 35.
    P. Sharma, S.C. Brown, G. Walter, S. Santra, E. Scott, H. Ichikawa, Y. Fukumori, and B.M. Moudgil, Adv. Powder Technol. 18, 663 (2007).CrossRefGoogle Scholar
  36. 36.
    M. Song, L. Wang, Y. Feng, H. Wang, X. Wang, and D. Li, Opt. Mater. 84, 284 (2018).CrossRefGoogle Scholar
  37. 37.
    V. Singh, G. Sivaramaiah, J.L. Rao, and S.H. Kim, J. Electron. Mater. 43, 3486 (2014).CrossRefGoogle Scholar
  38. 38.
    V. Singh, N. Singh, M.S. Pathak, H. Jeong, S. Wantanabe, T.K. Gundu Rao, V. Dubey, and V.K. Rai, J. Mater. Sci.: Mater. Electron. 29, 3006 (2018).Google Scholar
  39. 39.
    V. Singh, G. Sivaramaiah, J.L. Rao, S.J. Dhoble, and S.H. Kim, Mater. Chem. Phys. 149–150, 202 (2015).CrossRefGoogle Scholar
  40. 40.
    V. Singh, R.P.S. Chakradhar, J.L. Rao, and S.H. Kim, J. Lumin. 154, 328 (2014).CrossRefGoogle Scholar
  41. 41.
    V. Singh, S. Borkotoky, A. Murali, J.L. Rao, T.K. Gundu Rao, and S.J. Dhoble, Spectrochim. Acta A Mol. Biomol. Spectrosc. 139, 1 (2015).CrossRefGoogle Scholar
  42. 42.
    V. Singh, G. Sivaramaiah, J.L. Rao, S. Watanabe, T.K. Gundu Rao, S.S. Jagtap, and P.K. Singh, J. Alloys Compd. 648, 1083 (2015).CrossRefGoogle Scholar
  43. 43.
    V. Singh, G. Sivaramaiah, N. Singh, M.S. Pathak, J.L. Rao, H.D. Jirimali, and V. Natarajan, Optik 169, 397 (2018).CrossRefGoogle Scholar
  44. 44.
    A.O. Chauhan, A.B. Gawande, and S.K. Omanwar, Optik 127, 6647 (2016).CrossRefGoogle Scholar
  45. 45.
    V. Gorbenko, T. Zorenko, S. Witkiewicz, K. Paprocki, A. Iskaliyeva, A.M. Kaczmarek, R. Van Deun, M.N. Khaidukov, M. Batentschuk, and Y. Zorenko, J. Lumin. 199, 245 (2018).CrossRefGoogle Scholar
  46. 46.
    A.A. Setlur, W.J. Heward, Y. Gao, A.M. Srivastava, R. Gopi Chandran, and M.V. Shankar, Chem. Mater. 18, 3314 (2006).CrossRefGoogle Scholar
  47. 47.
    N. Khaidukov, T. Zorenko, A. Iskaliyeva, K. Paprocki, K. Paprocki, M. Batentschuk, A. Osvet, R. Van Deun, Y. Zhydaczevskii, A. Suchocki, and Y. Zorenko, J. Lumin. 192, 328 (2017).CrossRefGoogle Scholar
  48. 48.
    K. Sadhana, S.R. Murthy, and K. Praveena, Mater. Sci. Semicond. Process. 34, 305 (2015).CrossRefGoogle Scholar
  49. 49.
    K. Sadhana, S.R. Murthy, and K. Praveena, J. Mater. Sci.: Mater. Electron. 25, 5130 (2014).Google Scholar
  50. 50.
    K. Praveena, K. Sadhana, S. Srinath, and S.R. Murthy, Mater. Res. Innov. 18, 69 (2014).CrossRefGoogle Scholar
  51. 51.
    K. Sadhana, S.E.N. Vinodini, R. Sandhya, and K. Praveena, Adv. Mater. Lett. 6, 717 (2015).CrossRefGoogle Scholar
  52. 52.
    K. Praveena, S. Matteppanavar, H.-L. Liu, and K. Sadhana, J. Mater. Sci.: Mater. Electron. 28, 4179 (2017).Google Scholar
  53. 53.
    A. Patterson, Phys. Rev. 56, 978 (1939).CrossRefGoogle Scholar
  54. 54.
    S. Kaur, M. Jayasimhadri, and A.S. Rao, J. Alloys Compd. 697, 367 (2017).CrossRefGoogle Scholar
  55. 55.
    V. Singh, G. Sivaramaiah, J.L. Rao, and S.H. Kim, J. Lumin. 143, 162 (2013).CrossRefGoogle Scholar
  56. 56.
    Z. Mu, Y. Hu, L. Chen, X. Wang, R. Chen, T. Wang, Y. Fu, and J. Xu, Displays 35, 147 (2014).CrossRefGoogle Scholar
  57. 57.
    P. Gupta, A.K. Bedyal, V. Kumar, Y. Khajuria, V. Sharma, O.M. Ntwaeaborwa, and H.C. Swart, Mater. Res. Express 2, 076202 (2015).CrossRefGoogle Scholar
  58. 58.
    S. Tamboli, G.B. Nair, S.J. Dhoble, and D.K. Burghate, Phys. B 535, 232 (2018).CrossRefGoogle Scholar
  59. 59.
    H. Jeong, N. Singh, M.S. Pathak, S. Watanabe, T.K.G. Rao, V. Dubey, and V. Singh, Optik 157, 1199 (2018).CrossRefGoogle Scholar
  60. 60.
    M.S. Pathak, N. Singh, V. Singh, S. Watanbe, T.K. Gundu Rao, and J.K. Lee, Mater. Res. Bull. 97, 512 (2018).CrossRefGoogle Scholar
  61. 61.
    Y.-C. Li, Y.-H. Chang, Y.-S. Chang, Y.-J. Lin, and C.-H. Laing, J. Phys. Chem. C 111, 10682 (2007).CrossRefGoogle Scholar
  62. 62.
    V. Singh, G. Sivaramaiah, J.L. Rao, and S.H. Kim, Phys. B 416, 101 (2013).CrossRefGoogle Scholar
  63. 63.
    V. Singh, G. Sivaramaiah, J.L. Rao, R.S. Kumaran, P.K. Singh, T.-S. Kim, and L.K. Kim, J. Mater. Sci.: Mater. Electron. 26, 5195 (2015).Google Scholar
  64. 64.
    A.K. Vishwakarma and M. Jayasimhadri, J. Lumin. 176, 112 (2016).CrossRefGoogle Scholar
  65. 65.
    B.V. Ratnam, M.K. Sahu, A.K. Vishwakarma, K. Jha, H. Woo, K. Jang, and M. Jayasimhadri, J. Lumin. 185, 99 (2017).CrossRefGoogle Scholar
  66. 66.
    L.E. Iton, C.M. Brodbeck, S.L. Suib, and G.D. Stucky, J. Chem. Phys. 79, 1185 (1983).CrossRefGoogle Scholar
  67. 67.
    E. Culea, L. Pop, and S. Simon, Mater. Sci. Eng., B 112, 59 (2004).CrossRefGoogle Scholar
  68. 68.
    K. Srinivasulu, I. Omkaram, H. Obeid, A.S. Kumar, and J.L. Rao, J. Mol. Struct. 1036, 63 (2013).CrossRefGoogle Scholar
  69. 69.
    V. Singh, G. Sivaramaiah, J.L. Rao, and S.H. Kim, J. Lumin. 157, 82 (2015).CrossRefGoogle Scholar
  70. 70.
    V. Singh, G. Sivaramaiah, J.L. Rao, and S.H. Kim, Mater. Res. Bull. 60, 397 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Vijay Singh
    • 1
    Email author
  • Sumandeep Kaur
    • 2
  • A. S. Rao
    • 2
  • N. Singh
    • 1
  • M. S. Pathak
    • 1
  • J. L. Rao
    • 3
  1. 1.Department of Chemical EngineeringKonkuk UniversitySeoulKorea
  2. 2.Department of Applied PhysicsDelhi Technological UniversityDelhiIndia
  3. 3.Department of PhysicsS.V. UniversityTirupatiIndia

Personalised recommendations