Phase Structure, Raman Spectra, Microstructure, and Dielectric Properties of (K0.5 Na0.5)NbO3-Bi(Li1/3Zr2/3)O3 Solid Solutions

  • Hailin Zhang
  • Xu Li
  • Xiuli ChenEmail author
  • Huanfu Zhou
  • Xiaoxia Li
  • Xiao Yan
  • Gaofeng Liu
  • Jie Sun


In this study, (1 − x)(K0.5Na0.5)NbO3-xBi(Li1/3Zr2/3)O3 (KNN-BLZ, x = 0, 0.005, 0.01, 0.015, or 0.02) lead-free ceramics were fabricated. The effects of the addition of Bi(Li1/3Zr2/3)O3 on the dielectric properties, microstructure, and phase structure of the KNN ceramics were studied. The structures of KNN ceramics shifted from an orthorhombic to tetragonal phase structure with the addition of Bi(Li1/3Zr2/3)O3. Furthermore, at x = 0.005, the ceramics exhibited good thermal stability (Δε/ε150°C ≤ ± 10%), low dielectric loss (tanΔ < 2.5%), and large relative permittivity (ε ~ 2160) in the temperature range of 154–370°C. Additionally, the electrical properties of the ceramic at high temperatures showed that the basic mechanism of the conduction and relaxation processes was thermal activation, and oxygen vacancies may be one of the mobile charge carriers.


Raman spectroscopy dielectric properties thermal stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Natural Science Foundation of China (Nos. 11664008 and 11364012), Natural Science Foundation of Guangxi (Nos. 2017GXNSFDA198027 and 2017GXNSFFA198011).


  1. 1.
    L. Li, W. Bai, Y. Zhang, B. Shen, and J. Zhai, J. Alloys Compd. 622, 137 (2015).CrossRefGoogle Scholar
  2. 2.
    H. Kishi, Y. Mizuno, and H. Chazono, J. Appl. Phys. 42, 1 (2003).CrossRefGoogle Scholar
  3. 3.
    M. Demartin Maeder, D. Damjanovic, and N. Setter, J. Electroceram. 13, 385 (2004).CrossRefGoogle Scholar
  4. 4.
    K. Wang and J.F. Li, Adv. Funct. Mater. 20, 1924 (2010).CrossRefGoogle Scholar
  5. 5.
    J.G. Wu, D.Q. Xiao, and J.G. Zhu, Chem. Rev. 115, 2559 (2015).CrossRefGoogle Scholar
  6. 6.
    H.B. Zhang, S.L. Jiang, J.Z. Xiao, and K. Kajiyoshi, J. Appl. Phys. 107, 124118 (2010).CrossRefGoogle Scholar
  7. 7.
    G.F. Liu, X.L. Chen, G.S. Huang, D.D. Ma, and H.F. Zhou, J. Mater. Sci.: Mater. Electron. 28, 3931 (2017).Google Scholar
  8. 8.
    X. Pang, J.H. Qiu, K.J. Zhu, and J.Z. Du, Ceram. Int. 38, 2521 (2012).CrossRefGoogle Scholar
  9. 9.
    X.L. Chen, G.F. Liu, G.S. Huang, X. Yan, X.X. Li, and H.F. Zhou, Mater. Lett. 199, 128 (2017).CrossRefGoogle Scholar
  10. 10.
    J.B. Lim, S.J. Zhang, N.C. Kim, and T.R. Shrout, J. Am. Ceram. Soc. 92, 679 (2009).CrossRefGoogle Scholar
  11. 11.
    M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J.J. Finley, Nature 432, 81 (2004).CrossRefGoogle Scholar
  12. 12.
    Q. Yuan, G. Li, F.Z. Yao, S.D. Cheng, Y. Wang, R. Ma, S.-B. Mi, M. Gu, K. Wang, J.F. Li, and H. Wang, Nano Energy 52, 203 (2018).CrossRefGoogle Scholar
  13. 13.
    J.G. Wu, Y.J. Yang, X.P. Wang, D.Q. Xiao, and J.G. Zhu, J. Mater. Sci.: Mater. Electron. 25, 4650 (2014).Google Scholar
  14. 14.
    X.L. Chen, D.D. Ma, G.S. Huang, J. Chen, H.F. Zhou, and L. Fang, Ceram. Int. 41, 13883 (2015).CrossRefGoogle Scholar
  15. 15.
    T.X. Yan, F.F. Han, S.K. Ren, X. Ma, L. Fang, L.J. Liu, and X.J. Kuang, Appl. Phys. A 124, 338 (2018).CrossRefGoogle Scholar
  16. 16.
    R.D. Shannon, Acta. Cryst. A 32, 751 (1976).CrossRefGoogle Scholar
  17. 17.
    C. Ma and X. Tan, Appl. Phys. A 107, 124108 (2010).CrossRefGoogle Scholar
  18. 18.
    X.L. Chen, Y.L. Wang, J. Chen, H.F. Zhou, L. Fang, and L.J. Liu, J. Am. Ceram. Soc. 96, 1 (2013).CrossRefGoogle Scholar
  19. 19.
    B. Malic, J. Bernard, A. Bencan, and M. Kosec, J. Eur. Ceram. Soc. 28, 1191 (2008).CrossRefGoogle Scholar
  20. 20.
    F. He, X.L. Chen, J. Chen, Y.L. Wang, H.F. Zhou, and L. Fang, J. Mater. Sci.: Mater. Electron. 24, 4346 (2013).Google Scholar
  21. 21.
    X.Y. Peng, B.P. Zhang, L.F. Zhu, L. Zhao, R.X. Ma, B. Liu, and X.D. Wang, J. Adv. Ceram. 7, 79 (2018).CrossRefGoogle Scholar
  22. 22.
    X.L. Chen, J. Chen, D.D. Ma, G.S. Huang, L. Fang, and H.F. Zhou, Mater. Lett. 145, 247 (2015).CrossRefGoogle Scholar
  23. 23.
    H.L. Cheng, H.L. Du, W.C. Zhou, D.M. Zhu, F. Luo, and B.X. Xu, J. Am. Ceram. Soc. 96, 833 (2013).CrossRefGoogle Scholar
  24. 24.
    J.M. Deng, X.J. Sun, S.S. Liu, L.J. Liu, T.X. Yan, L. Fang, and B. Elouadi, JAD 6, 1650009 (2016).Google Scholar
  25. 25.
    M.A. Rafiq, M.E. Costa, A. Tkach, and P.M. Vilarinho, Cryst. Growth Des. 15, 1289 (2015).CrossRefGoogle Scholar
  26. 26.
    X.X. Li, X.L. Chen, X. Yan, H.F. Zhou, X.B. Liu, X. Li, and J. Sun, Appl. Phys. A 124, 771 (2018).CrossRefGoogle Scholar
  27. 27.
    J.M. Deng, X.J. Sun, L.J. Liu, S.S. Liu, Y.M. Huang, L. Fang, and B. Elouadi, J. Electron. Mater. 45, 4089 (2016).CrossRefGoogle Scholar
  28. 28.
    X. Yan, X.L. Chen, X.X. Liu, G.F. Liu, H.L. Zhang, and H.F. Zhou, J. Mater. Sci. Mater. Electron. 29, 4538 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Hailin Zhang
    • 1
  • Xu Li
    • 1
  • Xiuli Chen
    • 1
    Email author
  • Huanfu Zhou
    • 1
  • Xiaoxia Li
    • 1
  • Xiao Yan
    • 1
  • Gaofeng Liu
    • 1
  • Jie Sun
    • 1
  1. 1.Key Laboratory of Nonferrous Materials and New Processing Technology, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, School of Materials Science and EngineeringGuilin University of TechnologyGuilinChina

Personalised recommendations