Advertisement

The Effect of Pressure on Elastic Anisotropy, Vibration and Optical Properties of a AgScSi Compound

  • İ. Kars DurukanEmail author
  • Y. Öztekin Çiftci
Article
  • 14 Downloads

Abstract

We present a detailed first-principals calculation to study the elastic anisotropy, vibrational and optic properties of a AgScSi compound using the generalized gradient approximation method with the projector augmented wave method. Optical, elastic anisotropy and phonon properties of AgScSi under pressure were analyzed. The degree of anisotropy with pressure change was analyzed in 3-dimensions. The phonon dispersion curves were drawn with corresponding phonon partial density of states. The optical properties of the AgScSi compound were examined according to the pressure to explore further application properties. According to our calculations, AgScSi compound, a semiconductor material, is dynamically stable, which is favorable for optoelectronic applications.

Keywords

Elastic anisotropy vibration properties optical properties AgScSi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    F. Heusler, W. Starck, and E. Haupt, Verh. D. DPG 5, 220 (1903).Google Scholar
  2. 2.
    F. Heusler, Verh. D. DPG 5, 219 (1903).Google Scholar
  3. 3.
    F. Casper, T. Graf, S. Chadov, B. Balke, and C. Felser, Semicond. Sci. Technol. 27, 063001 (2012).CrossRefGoogle Scholar
  4. 4.
    C. Felser, G.H. Fecher, and B. Balke, Angew. Chem. Int. Ed. 46, 668 (2007).CrossRefGoogle Scholar
  5. 5.
    J. Ma, J. He, D. Mazumdar, K. Munira, S. Keshavarz, T. Lovorn, C. Wolverton, A.W. Ghosh, and W.H. Butler, Phys. Rev. B 98, 094410 (2018).CrossRefGoogle Scholar
  6. 6.
    I. Galanakis, Theory of Heusler and Full-Heusler compounds.Heusler Alloys, Vol. 222, ed. C. Felser and A. HirohataSpringer Series in Materials Science, (Cham: Springer, 2016), p. 4.CrossRefGoogle Scholar
  7. 7.
    B. Zhaoqiang, S. Lei, H. Guchang, and P.F. Yuan, Spin 2, 1230006 (2012).CrossRefGoogle Scholar
  8. 8.
    İ. Kars Durukan, and Y. Öztekin Çiftci, II. International Conference on Materials Science and Nanotechnology for Next Generation, 4–6 October 2018. MSNG-2018 full text (2018), (pp. 70–74). http://msng2018.fytronix.com/.
  9. 9.
    G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).CrossRefGoogle Scholar
  10. 10.
    G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).CrossRefGoogle Scholar
  11. 11.
    G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
  12. 12.
    G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
  13. 13.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988).CrossRefGoogle Scholar
  14. 14.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  15. 15.
    P.E. Blochl, Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
  16. 16.
    H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
  17. 17.
    X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).CrossRefGoogle Scholar
  18. 18.
    A. Toga, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008).CrossRefGoogle Scholar
  19. 19.
    A. Marmier, Z.A.D. Lethbridge, R.I. Walton, C.W. Smith, S.C. Parker, and K.E. Evans, Comput. Phys. Commun. 181, 2102 (2010).CrossRefGoogle Scholar
  20. 20.
    C. Kaderoglu, G. Surucu, and A. Erkisi, J. Electron. Mater. 46, 10 (2017).CrossRefGoogle Scholar
  21. 21.
    H. Ledbetter and A. Migliori, J. Appl. Phys. 100, 063516 (2006).CrossRefGoogle Scholar
  22. 22.
    J. Chang, G.P. Zhao, X.L. Zhou, K. Liu, and L.Y. Lu, J. Appl. Phys. 112, 083519 (2012).CrossRefGoogle Scholar
  23. 23.
    A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015).CrossRefGoogle Scholar
  24. 24.
    Y.O. Ciftci and M. Evecen, Phase Transit. 91, 1206 (2018).CrossRefGoogle Scholar
  25. 25.
    B. Kocak, Y.O. Ciftci, K. Colakoglu, E. Deligoz, and A. Tatar, Mater. Sci. Technol. 29, 925 (2013).CrossRefGoogle Scholar
  26. 26.
    B. Kocak and Y.O. Ciftci, Comput. Condens. Matter 14, 176 (2018).CrossRefGoogle Scholar
  27. 27.
    G. Huaıxın, Z. Mıngfu, H. Jiecai, H. Zhang, and N. Song, Phys. B 407, 2262 (2012).CrossRefGoogle Scholar
  28. 28.
    I. Papadimitriou, C. Utton, A. Scott, and P. Tsakiropoulos, Metall. Mater. Trans. A 46, 566 (2015).CrossRefGoogle Scholar
  29. 29.
    H. Chen, X. Lei, J. Long, and W. Huang, Mater. Sci. Semicond. Process. 27, 207 (2014).CrossRefGoogle Scholar
  30. 30.
    B. Amin, I. Ahmad, M. Maqbool, S. Goumri-said, and R. Ahmad, J. Appl. Phys. 109, 023109 (2011).CrossRefGoogle Scholar
  31. 31.
    J.M. Hu, S.P. Huang, Z. Xie, H. Hu, and W.D. Cheng, J. Phys. Condens. Matter 19, 496215 (2007).CrossRefGoogle Scholar
  32. 32.
    F. Goubin, X. Rocquefelte, D. Pauwels, A. Tressaud, A. Demourgues, S. Jobic, and Y. Montardic, J. Solid State Chem. 177, 2833 (2004).CrossRefGoogle Scholar
  33. 33.
    F. Goubin, Y. Montardi, P. Deniard, X. Rocquefelte, R. Breca, and S. Jobica, J. Solid State Chem. 177, 89 (2004).CrossRefGoogle Scholar
  34. 34.
    M. Dadsetani and A. Pourghazi, Phys. Rev. B 73, 195102 (2006).CrossRefGoogle Scholar
  35. 35.
    R. Vidya, P. Ravindran, A. Kjekshus, and H. Fjellvag, Phys. Rev. B 65, 144422 (2004).CrossRefGoogle Scholar
  36. 36.
    A. Zaoui and M. Ferhat, Solid State Commun. 137, 49 (2006).CrossRefGoogle Scholar
  37. 37.
    M.Y. Duan, L. He, M. Xu, M.Y. Xu, S. Xu, and K. Ostrikov, Phys. Rev. B 81, 033102 (2010).CrossRefGoogle Scholar
  38. 38.
    G.Y. Gao, K.L. Yao, Z.L. Liu, Y.L. Li, Y.C. Li, and Q.M. Liu, Solid State Commun. 138, 494 (2006).CrossRefGoogle Scholar
  39. 39.
    M. Alouani and J.M. Wills, Phys. Rev. B 54, 2480 (1996).CrossRefGoogle Scholar
  40. 40.
    A. Amudhavallia, R. Rajeswarapalanichamya, K. Iyakuttib, and A.K. Kushwaha, Comput. Condens. Matter 14, 55 (2018).CrossRefGoogle Scholar
  41. 41.
    M. Afsari, A. Boochani, and M. Hantezadeh, Optik 127, 11433 (2016).CrossRefGoogle Scholar
  42. 42.
    S. Kacimi, H. Mehnane, and A. Zaoui, J. Alloys Compd. 587, 451 (2014).CrossRefGoogle Scholar
  43. 43.
    R. Saniz, L.H. Ye, T. Shishidou, and A.J. Freeman, Phys. Rev. B 74, 014209 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceGazi UniversityAnkaraTurkey

Personalised recommendations