Advertisement

Impedance Spectroscopy of Vanadium Pentoxide Thin Films

  • Krystyna SchneiderEmail author
  • Malgorzata Dziubaniuk
  • Jan Wyrwa
Open Access
Article
  • 13 Downloads

Abstract

V2O5 thin films have been deposited onto an insulating support by radiofrequency (rf) reactive sputtering from a metallic vanadium target at controlled flow rates of argon–oxygen gas mixture. Glancing-incidence x-ray diffraction (GIXD) analysis and scanning electron microscopy (SEM) were used for structural and phase characterization of the obtained materials. The as-sputtered thin films were found to consist of orthorhombic V2O5 phase. Electrical properties were determined by electrochemical impedance spectroscopy (EIS) conducted over the frequency range of 0.1 Hz to 1.4 MHz and temperatures ranging from room temperature (RT) to 773 K. Between RT and 528 K, the recorded impedance spectra were interpreted in terms of an equivalent circuit composed of a resistor and non-Debye constant-phase element (CPE) connected in parallel. In this temperature range, the material exhibited n-type extrinsic conductivity. The activation energy of electrical conductivity was 0.243 ± 0.023 eV. At 528 K, an abrupt change in resistivity was observed, interpreted as a metal–insulator transition (MIT). Above 528 K, the equivalent circuit was composed of a resistor (R) and inductor (L) connected in series, typical of materials exhibiting metallic properties.

Keywords

Oxide electronics vanadium pentoxide thin film electrical conductivity metal–insulator transition defect structure 

Notes

Acknowledgments

This work was supported by the National Science Centre of the Republic of Poland under Grant No. 2016/23/B/ST8/00163.

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

  1. 1.
    J.B. Goodenough and A. Hammett, in Landolt-Bo¨rnstein Numerical Data and Functional Relationships in Science and Technology, New Series Vol. 17 Semiconductors, eds. O. Madelung, M. Schulz, and H. Weiss (Berlin: Springer, 1984), pp. 167–201 and 446–491 (and references therein –262 items).Google Scholar
  2. 2.
    N.F. Mott, Metal-Insulator Transition (London: Taylor & Francis, 1974).  https://doi.org/10.1002/crat.19750100423.Google Scholar
  3. 3.
    K. Hermann and M. Witko, in The Chemical Physics of Solid Surfaces: Oxide Surfaces, Vol. 1, ed. By D.P. Woodruff (Elsevier, Amsterdam, 2001) (Chapter 4), p. 136.Google Scholar
  4. 4.
    B. Grzybowska-Swierkosz, F. Trifiro, and J.C. Vedrine, J. Appl. Catal. A 157, 1 (1997).CrossRefGoogle Scholar
  5. 5.
    K. Schneider, M. Lubecka, and A. Czapla, Sens. Actuators B 236, 970 (2016).CrossRefGoogle Scholar
  6. 6.
    Y. Yang, D. Yang, M. Ki, and P. Schmuki, Chem. Commun. 47, 7746 (2011).CrossRefGoogle Scholar
  7. 7.
    J.M. McGraw, J. Turner, and D. Ginley, J. Electrochem. Soc. 144, 1630 (1997).CrossRefGoogle Scholar
  8. 8.
    G. Guzman, B. Yebka, J. Livage, and C. Julien, Solid State Ion. 86–88, 407 (1996).CrossRefGoogle Scholar
  9. 9.
    A. Kumar, P. Singh, N. Kulkarni, and D. Kaur, Thin Solid Films 516, 912 (2008).CrossRefGoogle Scholar
  10. 10.
    A.-M. Cao, J.-S. Hu, H.-P. Liang, and L.-J. Wan, Angew. Chem. Int. Ed. 44, 4391 (2005).CrossRefGoogle Scholar
  11. 11.
    P.W. Kruse, Uncooled Thermal Imaging Arrays, Systems, and Applications (Bellingkam: SPIE Press, 2001). Google Scholar
  12. 12.
    C. Lamsal, in: Electronic thermoelectric and optical properties of vanadium oxides: VO2, V2O3 and V2O5, Ph.D. New Jersey Institute of Technology and Rutgers the State University of New Jersey 2015, Archives.njit.edu.vol01/etd/2015.022.ptd.Google Scholar
  13. 13.
    A. Pergament, G. Stefanovich, N. Kuldin, and A. Velichko, ISRN Condens. Matter Phys. 2013, 1 (2013).CrossRefGoogle Scholar
  14. 14.
    W.-T. Liu, J. Cao, W. Fan, Z. Hao, M.C. Martin, Y.R. Shen, J. Wu, and F. Wang, Nano Lett. 11, 466 (2011).CrossRefGoogle Scholar
  15. 15.
    A. Pergament, G. Stefanovich, and V. Andreev, Appl. Phys. Lett. 102, 176101 (2013).CrossRefGoogle Scholar
  16. 16.
    A.I. Pergament, ISRN Condens. Matter Phys. 2011, 1 (2011)Google Scholar
  17. 17.
    K. Schneider, K. Kluczewska, M. Dziubaniuk, and J. Wyrwa, in EYEC Monograph, Warsaw, ed. By M. Nowak (2018), pp. 227–240, ISBN 978-83-936575-5-1.Google Scholar
  18. 18.
    J.D. Hanawalt, H.W. Rinn, and L.K. Frevel, Ind. Eng. Chem. Anal. Ed. 10, 457 (1938).CrossRefGoogle Scholar
  19. 19.
    R.W.G. Wyckoff, Crystal Structures, 2nd ed., Vol. 2 (New York: Wiley, 1964).Google Scholar
  20. 20.
    R. Enjalbert and J. Galy, Acta Crystallogr. Sect. C R. Cryst. Struct. Commun. 42, 1467 (1986).CrossRefGoogle Scholar
  21. 21.
    A. Chakrabarti, K. Hermann, R. Druzinic, M. Witko, F. Wagner, and M. Petersen, Phys. Rev. B 59, 10583 (1999).CrossRefGoogle Scholar
  22. 22.
    P. Kofstad, Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides (London: Wiley, 1972).Google Scholar
  23. 23.
    K. Schneider, in Proceedings of SPIE (2016), pp. 109-1–109-9.Google Scholar
  24. 24.
    P. Kang, I. Kim, S. Kim, and H.Y. Park, Appl. Phys. Lett. 98, 131907 (2011).CrossRefGoogle Scholar
  25. 25.
    E.E. Chain, Appl. Opt. 30, 2782 (1991).CrossRefGoogle Scholar
  26. 26.
    P. Kiri, G. Hyett, and R. Binions, Adv. Mater. Lett. 1, 86 (2010).CrossRefGoogle Scholar
  27. 27.
    T. Wu, C.J. Patridge, S. Banerjee, and G. Sambandamurthy, in APS Meeting, March 15–19 (2010). American Physical Society. Abstract #V16.007.Google Scholar

Copyright information

© The Author(s) 2019

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Faculty of Computer Science, Electronics and TelecommunicationsAGH University of Science and TechnologyKrakówPoland
  2. 2.Faculty of Materials Science and CeramicsAGH University of Science and TechnologyKrakówPoland

Personalised recommendations