Structure and Microwave Dielectric Properties of Low Temperature Sinterable NaR5(MoO4)8 (R = La, Pr, Nd, Sm) Ceramics

  • Johnson Dhanya
  • Elattuvalappil Kalathil Suresh
  • Rajaram Naveenraj
  • Ravendran RatheeshEmail author


Phase pure NaR5(MoO4)8 (R = La, Pr, Nd, Sm) ceramics were prepared by a conventional solid-state ceramic route at low sintering temperatures. Powder x-ray diffraction studies were performed to confirm the phase purity of the samples. The presence of MoO 4 2- tetrahedra in the crystal structure was confirmed by Raman spectroscopy of the samples. Surface morphology investigations using scanning electron microscopy show that the sintered samples have compact microstructure and phase homogeneity. The microwave dielectric characterization of the sintered ceramics show that the samples have excellent quality factor, low temperature coefficient of resonant frequency and hence are ideal candidate materials for microwave circuit applications. The NaR5(MoO4)8 (R = La, Pr, Nd, Sm) ceramics possess εr from 10.6 to 11.5, quality factor Qu × f from 56200 GHz to 78600 GHz, temperature coefficient of resonant frequency τf from − 42 ppm/oC to − 72 ppm/oC and linear thermal expansion coefficient CTE ranging from + 8.75 ppm/°C to + 11.54 ppm/°C. The chemical compatibility of the ceramics with silver electrodes was determined by x-ray diffraction and energy dispersive x-ray spectroscopic analyses of the silver co-fired ceramic samples.


Raman spectroscopy microstructure x-ray diffraction low temperature co-fired ceramic energy dispersive x-ray spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to Dr. N. Raghu, Director, C-MET, Thrissur for extending facilities to the work. The authors are also thankful to the Board of Research in Nuclear Sciences, Mumbai, for financial support under Grant Number 34/15/01/2014-BRNS/0906. One of the authors, Dhanya Johnson, is grateful to the University of Calicut, India. One of the authors, E. K. Suresh is grateful to the Council of Scientific and Industrial Research (CSIR), India, for the award of Senior Research Fellowship.


  1. 1.
    F.F. Manzillo, M. Ettorre, M.S. Lahti, K.T. Kautio, D. Lelaidier, E. Seguenot, and R. Sauleau, IEEE Trans. Microw. Theory Tech. 64, 2272 (2016).CrossRefGoogle Scholar
  2. 2.
    A. Gupta and R.K. Jha, IEEE Access. 3, 1206 (2015).CrossRefGoogle Scholar
  3. 3.
    J. Xu and X. Zhang, IEEE Trans. Microw. Theory Tech. 65, 4636 (2017).CrossRefGoogle Scholar
  4. 4.
    J. Xu, Z.-N. Chen, X. Qing and W. Hong, I.E.E.E. Trans. Antennas Propag. 59, 826 (2011).CrossRefGoogle Scholar
  5. 5.
    M. Du, Y. Dong, J. Xu, and X. Ding, I.E.E.E. Trans. Antennas Propag. 65, 3235 (2017).CrossRefGoogle Scholar
  6. 6.
    I. Wolff, C. Günner, J. Kassner, R. Kulke, and P. Uhlig, IEEE Microw. Mag. 19, 36 (2018).CrossRefGoogle Scholar
  7. 7.
    M. Du, J. Xu, Y. Dong, and X. Ding, IEEE Antennas Wireless Propag. Lett. 16, 1953 (2017).CrossRefGoogle Scholar
  8. 8.
    U. Rosenberg, M. Salehi, J. Bornemann, E. Mehrshahi, and I.E.E.E. Microw, Wirel. Compon. Lett. 23, 406 (2013).CrossRefGoogle Scholar
  9. 9.
    L.X. Pang, D. Zhou, Z.M. Qi, W.G. Liu, Z.X. Yue, and I.M. Reaney, J. Mater. Chem. C. 5, 2695 (2017).CrossRefGoogle Scholar
  10. 10.
    D. Zhou, L.X. Pang, D.W. Wang, C. Li, B.B. Jin, and I.M. Reaney, J. Mater. Chem. C. 5, 10094 (2017).CrossRefGoogle Scholar
  11. 11.
    J.J. Bian, Q. Yu, and J.J. He, J. Eur. Ceram. Soc. 37, 647 (2017).CrossRefGoogle Scholar
  12. 12.
    H. Yu, J. Liu, W. Zhang, and S. Zhang, J. Mater. Sci.: Mater. Electron. 26, 9414 (2015).Google Scholar
  13. 13.
    M.T. Sebastian, H. Wang, and H. Jantunen, Curr. Opin. Solid State Mater. Sci. 20, 151 (2016).CrossRefGoogle Scholar
  14. 14.
    J. Varghese, T. Siponkoski, M. Sobocinski, T. Vahera and H. Jantunen, A.C.S. Appl. Mater. Interfaces. 10, 11048 (2018).CrossRefGoogle Scholar
  15. 15.
    Z. Wang, C. Yuan, B. Zhu, Q. Feng, F. Liu, L. Miao, C. Zhou, and G. Chen, J. Mater. Sci.- Mater. Electron. 29, 1817 (2018).CrossRefGoogle Scholar
  16. 16.
    C. Li, W. Wen, H. Xiang, L. Fang, and Y. Sun, J. Mater. Sci.- Mater. Electron. 29, 1907 (2018).CrossRefGoogle Scholar
  17. 17.
    A. Surjith, E.K. Suresh, S. Freddy, and R. Ratheesh, J. Mater. Sci.- Mater. Electron. 24, 1818 (2013).CrossRefGoogle Scholar
  18. 18.
    J. Varghese, T. Siponkoski, M. Nelo, M.T. Sebastian, and H. Jantunen, J. Eur. Ceram. Soc. 38, 1541 (2018).CrossRefGoogle Scholar
  19. 19.
    J. Dhanya, A.V. Basiluddeen, and R. Ratheesh, Scripta Mater. 132, 1 (2017).CrossRefGoogle Scholar
  20. 20.
    D. Zhou, C.A. Randall, H. Wang, L.X. Pang, and X. Yao, J. Am. Ceram. Soc. 93, 1096 (2010).CrossRefGoogle Scholar
  21. 21.
    D. Zhou, H. Wang, L.X. Pang, C.A. Randall, and X. Yao, J. Am. Ceram. Soc. 92, 2242 (2009).CrossRefGoogle Scholar
  22. 22.
    J. Dhanya, E.K. Suresh, R. Naveenraj, and R. Ratheesh, Ceram. Int. 44, 6699 (2018).CrossRefGoogle Scholar
  23. 23.
    T.P. Rybakova and V.K. Trunov, Russ. J. Inorg. Chem. 19, 888 (1974).Google Scholar
  24. 24.
    V.K. Trunov, A.A. Evdokimov, T.P. Rybakova, and T.A. Berezina, Russ. J. Inorg. Chem. 24, 93 (1979).Google Scholar
  25. 25.
    V.A. Morozov, V.M. Andrei, I.L. Bogdan, E.G. Khaikina, O.M. Basovich, M.D. Rossell, and G.V. Tendeloo, J. Solid State Chem. 179, 1183 (2006).CrossRefGoogle Scholar
  26. 26.
    B.W. Hakki and P.D. Coleman I.R.E. Trans. Microwave Theory Tech. 8, 402 (1960).CrossRefGoogle Scholar
  27. 27.
    J. Krupka, K. Derzakowski, B. Riddle and J.B. Jarvis, Meas. Sci. Technol. 9, 1751 (1998).CrossRefGoogle Scholar
  28. 28.
    N.K. James and R. Ratheesh, J. Am. Ceram. Soc. 93, 931 (2010).CrossRefGoogle Scholar
  29. 29.
    F.D. Hardcastle and I.E. Wachs, J. Raman Spectrosc. 21, 683 (1990).CrossRefGoogle Scholar
  30. 30.
    F.D. Hardcastle and I.E. Wachs, J. Phys. Chem. 95, 10763 (1991).CrossRefGoogle Scholar
  31. 31.
    A. Surjith and R. Ratheesh, J. Alloy. Compd. 550, 169 (2013).CrossRefGoogle Scholar
  32. 32.
    V.L. Vilesh and G. Subodh, Ceram. Int. 44, 12036 (2018).CrossRefGoogle Scholar
  33. 33.
    S.D. Ramarao, S.R. Kiran, and V.R. Murthy, Mater. Res. Bull. 56, 71 (2014).CrossRefGoogle Scholar
  34. 34.
    M.Y. Chen, C.T. Chia, I. Lin, L.-J. Lin, C.-W. Ahn, and S. Nahm, J. Eur. Ceram. Soc. 26, 1965 (2006).CrossRefGoogle Scholar
  35. 35.
    J. Zhang, J. Zhai, J. Wang, J. Shao, X. Lu, and X. Yao, J. Appl. Phys. 107, 014106 (2010).CrossRefGoogle Scholar
  36. 36.
    F. Shi and H. Dong, Dalton Trans. 40, 6659 (2011).CrossRefGoogle Scholar
  37. 37.
    R.D. Shannon, Acta. Cryst. A. 32, 751 (1976).CrossRefGoogle Scholar
  38. 38.
    S.D. Ramarao and V.R.K. Murthy, Dalton Trans. 44, 2311 (2015).CrossRefGoogle Scholar
  39. 39.
    R.D. Shannon, J. Appl. Phys. 73, 348 (1993).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Microwave Materials Division, Centre for Materials for Electronics Technology (C-MET)Ministry of Electronics and Information Technology (MeitY), Government of IndiaThrissurIndia
  2. 2.Centre for Materials for Electronics Technology (C-MET)Ministry of Electronics and Information Technology (MeitY), Government of IndiaHyderabadIndia

Personalised recommendations