Dielectric, Piezoelectric and Ferroelectric Properties of Flexible 0–3 Type PZT/PVDF Composites Doped with Graphene

  • Jian Tang
  • Jun LiuEmail author
  • Huanqi Huang


A 0–3 type PZT/PVDF composite was fabricated from lead zirconate titanate (PZT) and polyvinylidene fluoride (PVDF) by tape casting. Different amounts of graphene (GR) (0–0.9 wt.%) were added to study the electrical properties of the PZT/PVDF composite. The dielectric, piezoelectric and ferroelectric properties of the composites were investigated when the grain size of the PZT powder and the mass fraction of graphene were varied. The dielectric constant and dielectric loss tangent increased with the graphene content. When 0.6 wt.% graphene was added, the PZT/PVDF/GR composite had a piezoelectric constant of 27.62 pC/N, which is 21.6% higher than that of the composite without graphene.


PZT graphene composite 0–3 connectivity electrical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by the Natural Science Foundation of Jiangsu province (Grant No. BK2009718) and the National Natural Science Foundation of China (Grant No. 11272138).


  1. 1.
    J. Dargahi, W.F. Xie, and P. Ji, Mechatronics 18, 195 (2008).CrossRefGoogle Scholar
  2. 2.
    S.-C. Choi and J.-S. Park, Compos. Struct. 76, 362 (2006).CrossRefGoogle Scholar
  3. 3.
    S. Hurlebaus, U. Stobener, and L. Gaul, Comput. Struct. 86, 251 (2008).CrossRefGoogle Scholar
  4. 4.
    S.T. Lau, K.W. Kwok, H.L.W. Chan, and C.L. Choy, Sens. Actuator A Phys. 96, 14 (2002).CrossRefGoogle Scholar
  5. 5.
    S.V. Glushanin, V.Y. Topolov, and A.V. Krivoruchko, Mater. Chem. Phys. 97, 357 (2006).CrossRefGoogle Scholar
  6. 6.
    L.K. Wang, J.L. Zhu, X.P. Zou, and F.Z. Zhang, Sens. Actuator B Chem. 66, 266 (2000).CrossRefGoogle Scholar
  7. 7.
    J.M. Park, J.W. Kong, D.S. Kim, and D.J. Yoon, Compos. Sci. Technol. 65, 241 (2005).CrossRefGoogle Scholar
  8. 8.
    R.E. Newnham, D.P. Skinner, and L.E. Cross, Mater. Res. Bull. 13, 525 (1978).CrossRefGoogle Scholar
  9. 9.
    A. Peláiz-Barranco, Scr. Mater. 54, 47 (2006).CrossRefGoogle Scholar
  10. 10.
    A.K. Sharma and G.D. Sharma, Int. J. Eng. Sci. 5, 245 (2014).Google Scholar
  11. 11.
    C. Sa-Gong, A. Safari, and R.E. Newnham, Sixth IEEE International Symposium on Applications of Ferroelectrics (1986), pp. 281–285.Google Scholar
  12. 12.
    A.B. Silva, M. Arjmand, U. Sundararaj, and R.E.S. Bretas, Polymer 55, 226 (2014).CrossRefGoogle Scholar
  13. 13.
    T. Greeshma, R. Balaji, and S. Jayakumar, Ferroelectr. Lett. Sect. 40, 41 (2013).CrossRefGoogle Scholar
  14. 14.
    J.F. Ihlefeld, D.T. Harris, R. Keech, J.L. Jones, J.P. Maria, and S.T. Mckinstry, J. Am. Ceram. Soc. 99, 2537 (2016).CrossRefGoogle Scholar
  15. 15.
    Q. Jiang, H. Ning, Q. Zhang, M. Cain, M.J. Reece, and H. Yan, J. Mater. Chem. C 1, 5628 (2013).CrossRefGoogle Scholar
  16. 16.
    G. Viola, K.B. Chong, M. Eriksson, Z. Shen, J. Zeng, Q. Yin, Y. Kan, P. Wang, H. Ning, H. Zhang, M.E. Fitzpatrick, M.J. Reece, and H. Yan, Appl. Phys. Lett. 103, 182903 (2013).CrossRefGoogle Scholar
  17. 17.
    J.-F. Capsal, E. Dantras, J. Dandurand, and C. Lacabanne, J. Non Cryst. Solids 357, 3410 (2011).CrossRefGoogle Scholar
  18. 18.
    H. Shan, S.S. Yue, and H.H. Chang, 2009 International Symposium on Liquid Crystal Science and Technology (2009), pp. 552–555.Google Scholar
  19. 19.
    Y. Xu, Ferroelectric Materials and Their Applications (North-Holland: Elsevier, 1991), pp. 330–333.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Material Science and EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations