Temperature-Robust Active Vibration Controller Using MWCNT/Epoxy Strain Sensor and PZT-5H Actuator

  • Gaurav SapraEmail author
  • Manu Sharma
  • Renu Vig
  • Sukesha Sharma


Active vibration control (AVC) of a cantilevered beam using a multiwalled carbon nanotube (MWCNT)/epoxy nanocomposite strain sensor and piezoelectric actuator at elevated temperature has been performed. The resistance of the nanocomposite strain sensor varies nonlinearly with the change in temperature. To use a carbon nanotube (CNT) nanocomposite strain sensor in AVC applications, the temperature variation of the sensor must be taken into account. A control law for AVC of the first mode of vibration of the cantilevered beam was derived using a negative velocity feedback control law. AVC of the first mode of the smart cantilevered beam instrumented with a collocated CNT nanocomposite strain sensor and piezoelectric actuator was performed at temperatures in the range of 40°C to 60°C under two cases, viz. without and with consideration of the temperature dependence of the CNT strain sensor in the control law, revealing that AVC performance was only maintained at elevated temperature in the latter case. These results suggest a strategy for AVC of a structure using a MWCNT/epoxy strain sensor and PZT-5H actuator that is robust to variations in temperature.


MWCNT AVC FFT tunneling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge academic support from the University Institute of Engineering and Technology (UIET), Panjab University, Chandigarh. We are also grateful to Mr. Jaskaran Singh, bachelor student, UIET, Panjab University for support. We would also like to acknowledge Dr. Parveen Kumar, scientist, CSIO, Chandigarh for valuable guidance.

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. 1.
    C.M. Harris and A.G. Piersol, Harris’ Shock and Vibration Handbook, 5th ed. (New York City: McGraw-Hill, 2002).Google Scholar
  2. 2.
    P. Dharap, Z. Li, S. Nagarajaiah, and E.V. Barrera, Nanotechnology 15, 379 (2004).CrossRefGoogle Scholar
  3. 3.
    A. Sakhaee-Pour, M.T. Ahmadian, and A. Vafai, Solid State Commun. 147, 336 (2008).CrossRefGoogle Scholar
  4. 4.
    M. Knite, V. Teteris, A. Kiploka, and J. Kaupuzs, Sens. Actuator A-Phys. 110, 142 (2004).CrossRefGoogle Scholar
  5. 5.
    H. Zhao, Y. Zhang, P.D. Bradford, Q. Zhou, Q. Jia, F.-G. Yuan, and Y. Zhu, Nanotechnology 21, 305502 (2010).CrossRefGoogle Scholar
  6. 6.
    M.D. Rein, O. Breuer, and H.D. Wagner, Compos. Sci. Technol. 71, 373 (2011).CrossRefGoogle Scholar
  7. 7.
    H. Ning, H. Fukunaga, S. Atobe, Y. Liu, and J. Li, Sensors 11, 10691 (2011).CrossRefGoogle Scholar
  8. 8.
    W. Bauhofer and J.Z. Kovacs, Compos. Sci. Technol. 69, 1486 (2009).CrossRefGoogle Scholar
  9. 9.
    N.K. Shrivastava, S. Maiti, S. Suin, and B.B. Khatua, Express Polym. Lett. 8, 15 (2014).CrossRefGoogle Scholar
  10. 10.
    X. Zeng, X. Xiaofeng, P.M. Shenai, C. Baudot, N. Mathews, and Y. Zhao, J. Phys. Chem. C 115, 21685 (2011).CrossRefGoogle Scholar
  11. 11.
    Q. Li, Q. Xue, X.L. Gao, and Q.B. Zheng, Express Polym. Lett. 3, 769 (2009).CrossRefGoogle Scholar
  12. 12.
    H. Ning, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga, Acta Mater. 56, 2929 (2008).CrossRefGoogle Scholar
  13. 13.
    Y. Yu, G. Song, and L. Sun, J. Appl. Phys. 108, 084319 (2010).CrossRefGoogle Scholar
  14. 14.
    M. K. Njuguna, Queensland University of Technology (2012)Google Scholar
  15. 15.
    A. Bouhamed, C. Müller, S. Choura, and O. Kanoun, Sens. Actuator A-Phys. 257, 65 (2017).CrossRefGoogle Scholar
  16. 16.
    Z. Han and A. Fina, Prog. Polym. Sci. 36, 914 (2011).CrossRefGoogle Scholar
  17. 17.
    A. Preumont, Vibration Control of Active Structures, 2nd ed. (Berlin: Springer, 1997).CrossRefGoogle Scholar
  18. 18.
    R. Zemcik and P. Sadilek, Appl. Comput. Mech. 1, 381 (2007).Google Scholar
  19. 19.
    S.M. Yang and Y.J. Lee, J. Sound Vib. 176, 289 (1994).CrossRefGoogle Scholar
  20. 20.
    S.X. Xu and T.S. Koko, Finite Elem. Anal. Des. 40, 241 (2004).CrossRefGoogle Scholar
  21. 21.
    V. Balamurugan and S. Narayanan, Def. Sci. J. 51, 103 (2002).CrossRefGoogle Scholar
  22. 22.
    M. Gopal, Digital Cont & State Var Met, 4th ed. (New York City: Tata McGraw-Hill Education, 2012).Google Scholar
  23. 23.
    G. Sapra, P. Kumar, N. Kumar, R. Vig, and M. Sharma, J. Mater. Sci. Mater. Electron. 29, 19264 (2018).CrossRefGoogle Scholar
  24. 24.
    S. Tong, W. Yuan, H. Liu, H. Ning, C. Zhao, and Y. Zhao, Mater. Res. Express 4, 115008 (2017).CrossRefGoogle Scholar
  25. 25.
    G. Sapra, M. Sharma, and R. Vig, Microsyst. Technol. 24, 1683 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.UIET, Panjab UniversityChandigarhIndia

Personalised recommendations