Advertisement

Thin-Layer Dielectric and Left-Handed Metamaterial Stacked Compact Triband Antenna for 2 GHz to 4 GHz Wireless Networks

  • Md. Mehedi HasanEmail author
  • Mohammad Rashed Iqbal Faruque
  • Mohammad Tariqul Islam
Article
  • 15 Downloads

Abstract

As technology progresses, new approaches for the development of antenna systems must be developed. This study reveals a concept for a left-handed metamaterial-inspired compact triband antenna for use in wireless fidelity (WiFi), wireless local area networks (WLANs), and World Interoperability for Microwave Access (WiMAX) applications. The Microwave Studio computer technology simulation package was used to design and perform a numerical investigation on the metamaterial-inspired antenna on a thin layer of FR-4 dielectric material. The overall size of the antenna is 25 mm × 18 mm, and it is compatible with existing wireless devices. Results were measured in the frequency bands for wireless fidelity (2.41 GHz to 2.48 GHz), wireless local area networks (2.40 GHz to 2.49 GHz and 3.65 GHz to 3.69 GHz), and world interoperability for microwave access (3.30 GHz to 3.80 GHz). The measured average gain was 1.87 dBi, whereas the simulated gain was 1.93 dBi, associated with omnidirectional radiation patterns. The timing performance was analyzed, revealing fidelity factors for the face to face, side by side X, and side by side Y orientation of 0.76, 0.84, and 0.81, respectively. Finally, the operation bandwidth, antenna gain, omnidirectional radiation pattern, and fidelity factors of the timing performance reveal that the designed miniatured metamaterial antenna can be used in WiFi, WLAN, and WiMAX applications.

Keywords

Left-handed metamaterial metamaterial-inspired antenna wide bandwidth triple band 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Research Universiti Grant, GUP-2016-028.

Author Contributions

M.M.H. made substantial contributions to conception, design, experiment, and analysis. M.R.I.F. and M.T.I. participated in revising the article critically.

Conflict of Interest

The authors declare no conflicts of interest.

References

  1. 1.
    V.G. Veselago, Sov. Physi. Uspekhi 10, 509 (1968).CrossRefGoogle Scholar
  2. 2.
    J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, IEEE Trans. Microw. Theory Technol. 47, 2075 (1999).CrossRefGoogle Scholar
  3. 3.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).CrossRefGoogle Scholar
  4. 4.
    M.G. Mayani, S. Asadi, A. Pirhadi, and S.M. Mahani, Int. J. Electron. Commun. 97, 79 (2018).CrossRefGoogle Scholar
  5. 5.
    Y. Chang-Chun, C. Yi-Ping, W. Qiong, and Z. Shing-Chuang, Chin. Phys. Lett. 25, 482 (2008).CrossRefGoogle Scholar
  6. 6.
    F. Urbani, IEEE Antenn. Wirel. Propag. Lett. 9, 720 (2010).CrossRefGoogle Scholar
  7. 7.
    M. Rizwan, H.B. Jin, F. Rehman, and Z.L. Hou, Central Eur. J. Phys. 12, 578 (2014).Google Scholar
  8. 8.
    M.M. Hasan, M.R.I. Faruque, and M.T. Islam, Bull. Pol. Acad. Sci. Technol. Sci. 5, 533 (2017).Google Scholar
  9. 9.
    S.P. Krishna and T. Khan, Int. J. Electron. Commun. 96, 107 (2018).CrossRefGoogle Scholar
  10. 10.
    M.M. Hasan, M.R.I. Faruque, and M.T. Islam, IEEE Access 5, 21217 (2017).CrossRefGoogle Scholar
  11. 11.
    L. Pazin, N. Telzhensky, and Y. Leviatan, IEEE Antenn. Wirel. Propag. Lett. 7, 197 (2008).CrossRefGoogle Scholar
  12. 12.
    J. Zhu and G.V. Eleftheriades, Electron. Lett. 45, 1104 (2009).CrossRefGoogle Scholar
  13. 13.
    K. Li, C. Zhu, L. Li, Y.M. Cai, and C.H. Liang, IEEE Antennas Wirel. Propag. Lett. 12, 678 (2013).CrossRefGoogle Scholar
  14. 14.
    A.T. Abed and M.S.J. Singh, Electron. Lett. 52, 1196 (2016).CrossRefGoogle Scholar
  15. 15.
    S. Nandi and A. Mohan, IEEE Antennas Wirel. Propag. Lett. 16, 1816 (2017).Google Scholar
  16. 16.
    H. Huang, Y. Liu, and S. Gong, IEEE Antennas Wirel. Propag. Lett. 15, 576 (2015).CrossRefGoogle Scholar
  17. 17.
    D. Sarkar and K.V. Srivastava, Electron. Lett. 53, 1623 (2017).CrossRefGoogle Scholar
  18. 18.
    Q. Li, Y. Wei, C. Ding, G. Wu, L. Zhang, F. Wang, X. Lei, J. Zhao, Z. Duan, M. Huang, Y. Gong, and M. Tan, in International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting (2017), pp. 2535–2536.Google Scholar
  19. 19.
    S.D. Assimonis, T. Samaras, and V. Fusco, IET Microw. Antennas Propag. 12, 332 (2018).CrossRefGoogle Scholar
  20. 20.
    S. Li, Compos. Sci. Technol. 68, 1962 (2008).CrossRefGoogle Scholar
  21. 21.
    O. Luukkonen, S.I. Maslovski, and S.A. Tretyakov, IEEE Antennas Wirel. Propag. Lett. 10, 1295 (2011).CrossRefGoogle Scholar
  22. 22.
    M.M. Hasan, M.R.I. Faruque, and M.T. Islam, Appl. Sci. 7, 1071 (2017).CrossRefGoogle Scholar
  23. 23.
    M.M. Hasan, M.R.I. Faruque, and M.T. Islam, Sci. Rep. 8, 1240 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Space Science Center (ANGKASA)Universiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Center of Advanced Electronics and Communication EngineeringUniversiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations